Radiologists are in short supply globally, and deep learning models offer a promising solution to address this shortage as part of clinical decision-support systems. However, training such models often requires expensive and time-consuming manual labeling of large datasets. Automatic label extraction from radiology reports can reduce the time required to obtain labeled datasets, but this task is challenging due to semantically similar words and missing annotated data. In this work, we explore the potential of weak supervision of a deep learning-based label prediction model, using a rule-based labeler. We propose a deep learning-based CheXpert label prediction model, pre-trained on reports labeled by a rule-based German CheXpert model and fine-tuned on a small dataset of manually labeled reports. Our results demonstrate the effectiveness of our approach, which significantly outperformed the rule-based model on all three tasks. Our findings highlight the benefits of employing deep learning-based models even in scenarios with sparse data and the use of the rule-based labeler as a tool for weak supervision.
Federated learning (FL) is an emerging paradigm that allows a central server to train machine learning models using remote users' data. Despite its growing popularity, FL faces challenges in preserving the privacy of local datasets, its sensitivity to poisoning attacks by malicious users, and its communication overhead. The latter is additionally considerably dominant in large-scale networks. These limitations are often individually mitigated by local differential privacy (LDP) mechanisms, robust aggregation, compression, and user selection techniques, which typically come at the cost of accuracy. In this work, we present compressed private aggregation (CPA), that allows massive deployments to simultaneously communicate at extremely low bit rates while achieving privacy, anonymity, and resilience to malicious users. CPA randomizes a codebook for compressing the data into a few bits using nested lattice quantizers, while ensuring anonymity and robustness, with a subsequent perturbation to hold LDP. The proposed CPA is proven to result in FL convergence in the same asymptotic rate as FL without privacy, compression, and robustness considerations, while satisfying both anonymity and LDP requirements. These analytical properties are empirically confirmed in a numerical study, where we demonstrate the performance gains of CPA compared with separate mechanisms for compression and privacy for training different image classification models, as well as its robustness in mitigating the harmful effects of malicious users.
Vision Transformers (ViTs) have emerged as a promising approach for visual recognition tasks, revolutionizing the field by leveraging the power of transformer-based architectures. Among the various ViT models, Swin Transformers have gained considerable attention due to their hierarchical design and ability to capture both local and global visual features effectively. This paper evaluates the performance of Swin ViT model using gradient accumulation optimization (GAO) technique. We investigate the impact of gradient accumulation optimization technique on the model's accuracy and training time. Our experiments show that applying the GAO technique leads to a significant decrease in the accuracy of the Swin ViT model, compared to the standard Swin Transformer model. Moreover, we detect a significant increase in the training time of the Swin ViT model when GAO model is applied. These findings suggest that applying the GAO technique may not be suitable for the Swin ViT model, and concern should be undertaken when using GAO technique for other transformer-based models.
Federated learning is an active research topic since it enables several participants to jointly train a model without sharing local data. Currently, cross-silo federated learning is a popular training setting that utilizes a few hundred reliable data silos with high-speed access links to training a model. While this approach has been widely applied in real-world scenarios, designing a robust topology to reduce the training time remains an open problem. In this paper, we present a new multigraph topology for cross-silo federated learning. We first construct the multigraph using the overlay graph. We then parse this multigraph into different simple graphs with isolated nodes. The existence of isolated nodes allows us to perform model aggregation without waiting for other nodes, hence effectively reducing the training time. Intensive experiments on three public datasets show that our proposed method significantly reduces the training time compared with recent state-of-the-art topologies while maintaining the accuracy of the learned model. Our code can be found at //github.com/aioz-ai/MultigraphFL
This paper investigates the problem of efficient constrained global optimization of hybrid models that are a composition of a known white-box function and an expensive multi-output black-box function subject to noisy observations, which often arises in real-world science and engineering applications. We propose a novel method, Constrained Upper Quantile Bound (CUQB), to solve such problems that directly exploits the composite structure of the objective and constraint functions that we show leads substantially improved sampling efficiency. CUQB is a conceptually simple, deterministic approach that avoid constraint approximations used by previous methods. Although the CUQB acquisition function is not available in closed form, we propose a novel differentiable sample average approximation that enables it to be efficiently maximized. We further derive bounds on the cumulative regret and constraint violation under a non-parametric Bayesian representation of the black-box function. Since these bounds depend sublinearly on the number of iterations under some regularity assumptions, we establis bounds on the convergence rate to the optimal solution of the original constrained problem. In contrast to most existing methods, CUQB further incorporates a simple infeasibility detection scheme, which we prove triggers in a finite number of iterations when the original problem is infeasible (with high probability given the Bayesian model). Numerical experiments on several test problems, including environmental model calibration and real-time optimization of a reactor system, show that CUQB significantly outperforms traditional Bayesian optimization in both constrained and unconstrained cases. Furthermore, compared to other state-of-the-art methods that exploit composite structure, CUQB achieves competitive empirical performance while also providing substantially improved theoretical guarantees.
Recent advancements in surgical computer vision applications have been driven by fully-supervised methods, primarily using only visual data. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. SurgVLP constructs a new contrastive learning objective to align video clip embeddings with the corresponding multiple text embeddings by bringing them together within a joint latent space. To effectively show the representation capability of the learned joint latent space, we introduce several vision-and-language tasks for surgery, such as text-based video retrieval, temporal activity grounding, and video captioning, as benchmarks for evaluation. We further demonstrate that without using any labeled ground truth, our approach can be employed for traditional vision-only surgical downstream tasks, such as surgical tool, phase, and triplet recognition. The code will be made available at //github.com/CAMMA-public/SurgVLP
For a long time, the Von Neumann has been a successful model of computation for sequential computing .Many models including the dataflow model have been unsuccessfully developed to emulate the same results in parallel computing. It is widely accepted that high performance computation is better-achieved using parallel architectures and is seen as the basis for future computational architectures with the ever-increasing need for high performance computation. We describe a new model of parallel computation known as the Arithmetic Deduction Model (AriDem) which has some similarities with the Von Neumann. A theoretical evaluation conducted on this model in comparison with the predominant von Neumann model indicated AriDeM to be more efficient in resources utilization. In this paper, we conduct an empirical evaluation of the model and the results reflect the output of the theoretical evaluation.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.