亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, it has been exposed that some modern facial recognition systems could discriminate specific demographic groups and may lead to unfair attention with respect to various facial attributes such as gender and origin. The main reason are the biases inside datasets, unbalanced demographics, used to train theses models. Unfortunately, collecting a large-scale balanced dataset with respect to various demographics is impracticable. In this paper, we investigate as an alternative the generation of a balanced and possibly bias-free synthetic dataset that could be used to train, to regularize or to evaluate deep learning-based facial recognition models. We propose to use a simple method for modeling and sampling a disentangled projection of a StyleGAN latent space to generate any combination of demographic groups (e.g. $hispanic-female$). Our experiments show that we can synthesis any combination of demographic groups effectively and the identities are different from the original training dataset. We also released the source code.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · Analysis · 塑造 · 估計/估計量 · 混合模型 ·
2023 年 10 月 31 日

Muscle volume is a useful quantitative biomarker in sports, but also for the follow-up of degenerative musculo-skelletal diseases. In addition to volume, other shape biomarkers can be extracted by segmenting the muscles of interest from medical images. Manual segmentation is still today the gold standard for such measurements despite being very time-consuming. We propose a method for automatic segmentation of 18 muscles of the lower limb on 3D Magnetic Resonance Images to assist such morphometric analysis. By their nature, the tissue of different muscles is undistinguishable when observed in MR Images. Thus, muscle segmentation algorithms cannot rely on appearance but only on contour cues. However, such contours are hard to detect and their thickness varies across subjects. To cope with the above challenges, we propose a segmentation approach based on a hybrid architecture, combining convolutional and visual transformer blocks. We investigate for the first time the behaviour of such hybrid architectures in the context of muscle segmentation for shape analysis. Considering the consistent anatomical muscle configuration, we rely on transformer blocks to capture the longrange relations between the muscles. To further exploit the anatomical priors, a second contribution of this work consists in adding a regularisation loss based on an adjacency matrix of plausible muscle neighbourhoods estimated from the training data. Our experimental results on a unique database of elite athletes show it is possible to train complex hybrid models from a relatively small database of large volumes, while the anatomical prior regularisation favours better predictions.

Several visual tasks, such as pedestrian detection and image-to-image translation, are challenging to accomplish in low light using RGB images. Heat variation of objects in thermal images can be used to overcome this. In this work, an end-to-end framework, which consists of a generative network and a detector network, is proposed to translate RGB image into Thermal ones and compare generated thermal images with real data. We have collected images from two different locations using the Parrot Anafi Thermal drone. After that, we created a two-stream network, preprocessed, augmented, the image data, and trained the generator and discriminator models from scratch. The findings demonstrate that it is feasible to translate RGB training data to thermal data using GAN. As a result, thermal data can now be produced more quickly and affordably, which is useful for security and surveillance applications.

Log-concave sampling has witnessed remarkable algorithmic advances in recent years, but the corresponding problem of proving lower bounds for this task has remained elusive, with lower bounds previously known only in dimension one. In this work, we establish the following query lower bounds: (1) sampling from strongly log-concave and log-smooth distributions in dimension $d\ge 2$ requires $\Omega(\log \kappa)$ queries, which is sharp in any constant dimension, and (2) sampling from Gaussians in dimension $d$ (hence also from general log-concave and log-smooth distributions in dimension $d$) requires $\widetilde \Omega(\min(\sqrt\kappa \log d, d))$ queries, which is nearly sharp for the class of Gaussians. Here $\kappa$ denotes the condition number of the target distribution. Our proofs rely upon (1) a multiscale construction inspired by work on the Kakeya conjecture in geometric measure theory, and (2) a novel reduction that demonstrates that block Krylov algorithms are optimal for this problem, as well as connections to lower bound techniques based on Wishart matrices developed in the matrix-vector query literature.

As advancements in artificial intelligence (AI) propel progress in the life sciences, they may also enable the weaponisation and misuse of biological agents. This article differentiates two classes of AI tools that could pose such biosecurity risks: large language models (LLMs) and biological design tools (BDTs). LLMs, such as GPT-4 and its successors, might provide dual-use information and thus remove some barriers encountered by historical biological weapons efforts. As LLMs are turned into multi-modal lab assistants and autonomous science tools, this will increase their ability to support non-experts in performing laboratory work. Thus, LLMs may in particular lower barriers to biological misuse. In contrast, BDTs will expand the capabilities of sophisticated actors. Concretely, BDTs may enable the creation of pandemic pathogens substantially worse than anything seen to date and could enable forms of more predictable and targeted biological weapons. In combination, the convergence of LLMs and BDTs could raise the ceiling of harm from biological agents and could make them broadly accessible. A range of interventions would help to manage risks. Independent pre-release evaluations could help understand the capabilities of models and the effectiveness of safeguards. Options for differentiated access to such tools should be carefully weighed with the benefits of openly releasing systems. Lastly, essential for mitigating risks will be universal and enhanced screening of gene synthesis products.

Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.

Systematic reviews are vital for guiding practice, research, and policy, yet they are often slow and labour-intensive. Large language models (LLMs) could offer a way to speed up and automate systematic reviews, but their performance in such tasks has not been comprehensively evaluated against humans, and no study has tested GPT-4, the biggest LLM so far. This pre-registered study evaluates GPT-4's capability in title/abstract screening, full-text review, and data extraction across various literature types and languages using a 'human-out-of-the-loop' approach. Although GPT-4 had accuracy on par with human performance in most tasks, results were skewed by chance agreement and dataset imbalance. After adjusting for these, there was a moderate level of performance for data extraction, and - barring studies that used highly reliable prompts - screening performance levelled at none to moderate for different stages and languages. When screening full-text literature using highly reliable prompts, GPT-4's performance was 'almost perfect.' Penalising GPT-4 for missing key studies using highly reliable prompts improved its performance even more. Our findings indicate that, currently, substantial caution should be used if LLMs are being used to conduct systematic reviews, but suggest that, for certain systematic review tasks delivered under reliable prompts, LLMs can rival human performance.

Recently, due to the popularity of deep neural networks and other methods whose training typically relies on the optimization of an objective function, and due to concerns for data privacy, there is a lot of interest in differentially private gradient descent methods. To achieve differential privacy guarantees with a minimum amount of noise, it is important to be able to bound precisely the sensitivity of the information which the participants will observe. In this study, we present a novel approach that mitigates the bias arising from traditional gradient clipping. By leveraging public information concerning the current global model and its location within the search domain, we can achieve improved gradient bounds, leading to enhanced sensitivity determinations and refined noise level adjustments. We extend the state of the art algorithms, present improved differential privacy guarantees requiring less noise and present an empirical evaluation.

Ensemble forecasts and their combination are explored from the perspective of a probability space. Manipulating ensemble forecasts as discrete probability distributions, multi-model ensembles (MMEs) are reformulated as barycenters of these distributions. Barycenters are defined with respect to a given distance. The barycenter with respect to the L2-distance is shown to be equivalent to the pooling method. Then, the barycenter-based approach is extended to a different distance with interesting properties in the distribution space: the Wasserstein distance. Another interesting feature of the barycenter approach is the possibility to give different weights to the ensembles and so to naturally build weighted MME. As a proof of concept, the L2- and the Wasserstein-barycenters are applied to combine two models from the S2S database, namely the European Centre Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) models. The performance of the two (weighted-) MMEs are evaluated for the prediction of weekly 2m-temperature over Europe for seven winters. The weights given to the models in the barycenters are optimized with respect to two metrics, the CRPS and the proportion of skilful forecasts. These weights have an important impact on the skill of the two barycenter-based MMEs. Although the ECMWF model has an overall better performance than NCEP, the barycenter-ensembles are generally able to outperform both. However, the best MME method, but also the weights, are dependent on the metric. These results constitute a promising first implementation of this methodology before moving to combination of more models.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司