亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

State-of-the-art sequential reasoning in Large Language Models (LLMs) has expanded the capabilities of Copilots beyond conversational tasks to complex function calling, managing thousands of API calls. However, the tendency of compositional prompting to segment tasks into multiple steps, each requiring a round-trip to the GPT APIs, leads to increased system latency and costs. Although recent advancements in parallel function calling have improved tool execution per API call, they may necessitate more detailed in-context instructions and task breakdown at the prompt level, resulting in higher engineering and production costs. Inspired by the hardware design principles of multiply-add (MAD) operations, which fuse multiple arithmetic operations into a single task from the compiler's perspective, we propose LLM-Tool Compiler, which selectively fuses similar types of tool operations under a single function at runtime, presenting them as a unified task to the LLM. This selective fusion inherently enhances parallelization and efficiency. Benchmarked on a large-scale Copilot platform, LLM-Tool Compiler achieves up to four times more parallel calls than existing methods, reducing token costs and latency by up to 40% and 12%, respectively.

相關內容

We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transparently. We apply local differential privacy to provide privacy for embeddings stored on a blockchain, hence protecting the original data. We provide the first prototype application of differential privacy with blockchain for vertical federated learning. Our experiments with medical data show that DP-BBVFL achieves high accuracy with a tradeoff in training time due to on-chain aggregation. This innovative fusion of differential privacy and blockchain technology in DP-BBVFL could herald a new era of collaborative and trustworthy machine learning applications across several decentralized application domains.

Unsupervised Anomaly Detection (UAD) methods aim to identify anomalies in test samples comparing them with a normative distribution learned from a dataset known to be anomaly-free. Approaches based on generative models offer interpretability by generating anomaly-free versions of test images, but are typically unable to identify subtle anomalies. Alternatively, approaches using feature modelling or self-supervised methods, such as the ones relying on synthetically generated anomalies, do not provide out-of-the-box interpretability. In this work, we present a novel method that combines the strengths of both strategies: a generative cold-diffusion pipeline (i.e., a diffusion-like pipeline which uses corruptions not based on noise) that is trained with the objective of turning synthetically-corrupted images back to their normal, original appearance. To support our pipeline we introduce a novel synthetic anomaly generation procedure, called DAG, and a novel anomaly score which ensembles restorations conditioned with different degrees of abnormality. Our method surpasses the prior state-of-the art for unsupervised anomaly detection in three different Brain MRI datasets.

This paper introduces BI-Directional DEliberation Reasoning (BIDDER), a novel reasoning approach to enhance the decision rationality of language models. Traditional reasoning methods typically rely on historical information and employ uni-directional (left-to-right) reasoning strategy. This lack of bi-directional deliberation reasoning results in limited awareness of potential future outcomes and insufficient integration of historical context, leading to suboptimal decisions. BIDDER addresses this gap by incorporating principles of rational decision-making, specifically managing uncertainty and predicting expected utility. Our approach involves three key processes: Inferring hidden states to represent uncertain information in the decision-making process from historical data; Using these hidden states to predict future potential states and potential outcomes; Integrating historical information (past contexts) and long-term outcomes (future contexts) to inform reasoning. By leveraging bi-directional reasoning, BIDDER ensures thorough exploration of both past and future contexts, leading to more informed and rational decisions. We tested BIDDER's effectiveness in two well-defined scenarios: Poker (Limit Texas Hold'em) and Negotiation. Our experiments demonstrate that BIDDER significantly improves the decision-making capabilities of LLMs and LLM agents.

Kriging is an established methodology for predicting spatial data in geostatistics. Current kriging techniques can handle linear dependencies on spatially referenced covariates. Although splines have shown promise in capturing nonlinear dependencies of covariates, their combination with kriging, especially in handling count data, remains underexplored. This paper proposes a novel Bayesian approach to the low-rank representation of geoadditive models, which integrates splines and kriging to account for both spatial correlations and nonlinear dependencies of covariates. The proposed method accommodates Gaussian and count data inherent in many geospatial datasets. Additionally, Laplace approximations to selected posterior distributions enhances computational efficiency, resulting in faster computation times compared to Markov chain Monte Carlo techniques commonly used for Bayesian inference. Method performance is assessed through a simulation study, demonstrating the effectiveness of the proposed approach. The methodology is applied to the analysis of heavy metal concentrations in the Meuse river and vulnerability to the coronavirus disease 2019 (COVID-19) in Belgium. Through this work, we provide a new flexible and computationally efficient framework for analyzing spatial data.

The reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs). Notably, collecting human feedback for RLHF can be resource-intensive and lead to scalability issues for LLMs and complex tasks. Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback. By enabling stable and reliable structural learning from fewer samples, Proto-RM significantly enhances LLMs' adaptability and accuracy in interpreting human preferences. Extensive experiments on various datasets demonstrate that Proto-RM significantly improves the performance of reward models and LLMs in human feedback tasks, achieving comparable and usually better results than traditional methods, while requiring significantly less data. in data-limited scenarios. This research offers a promising direction for enhancing the efficiency of reward models and optimizing the fine-tuning of language models under restricted feedback conditions.

Multimodal emotion recognition has recently gained much attention since it can leverage diverse and complementary relationships over multiple modalities (e.g., audio, visual, biosignals, etc.), and can provide some robustness to noisy modalities. Most state-of-the-art methods for audio-visual (A-V) fusion rely on recurrent networks or conventional attention mechanisms that do not effectively leverage the complementary nature of A-V modalities. In this paper, we focus on dimensional emotion recognition based on the fusion of facial and vocal modalities extracted from videos. Specifically, we propose a joint cross-attention model that relies on the complementary relationships to extract the salient features across A-V modalities, allowing for accurate prediction of continuous values of valence and arousal. The proposed fusion model efficiently leverages the inter-modal relationships, while reducing the heterogeneity between the features. In particular, it computes the cross-attention weights based on correlation between the combined feature representation and individual modalities. By deploying the combined A-V feature representation into the cross-attention module, the performance of our fusion module improves significantly over the vanilla cross-attention module. Experimental results on validation-set videos from the AffWild2 dataset indicate that our proposed A-V fusion model provides a cost-effective solution that can outperform state-of-the-art approaches. The code is available on GitHub: //github.com/praveena2j/JointCrossAttentional-AV-Fusion.

The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes. Further code and video results are released at //yuxuanw.me/vcedit/.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Relying entirely on an attention mechanism, the Transformer introduced by Vaswani et al. (2017) achieves state-of-the-art results for machine translation. In contrast to recurrent and convolutional neural networks, it does not explicitly model relative or absolute position information in its structure. Instead, it requires adding representations of absolute positions to its inputs. In this work we present an alternative approach, extending the self-attention mechanism to efficiently consider representations of the relative positions, or distances between sequence elements. On the WMT 2014 English-to-German and English-to-French translation tasks, this approach yields improvements of 1.3 BLEU and 0.3 BLEU over absolute position representations, respectively. Notably, we observe that combining relative and absolute position representations yields no further improvement in translation quality. We describe an efficient implementation of our method and cast it as an instance of relation-aware self-attention mechanisms that can generalize to arbitrary graph-labeled inputs.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司