亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The decidability of axiomatic extensions of the modal logic K with modal reduction principles, i.e. axioms of the form $\Diamond^{k} p \rightarrow \Diamond^{n} p$, has remained a long-standing open problem. In this paper, we make significant progress toward solving this problem and show that decidability holds for a large subclass of these logics, namely, for 'quasi-dense logics.' Such logics are extensions of K with with modal reduction axioms such that $0 < k < n$ (dubbed 'quasi-density axioms'). To prove decidability, we define novel proof systems for quasi-dense logics consisting of disjunctive existential rules, which are first-order formulae typically used to specify ontologies in the context of database theory. We show that such proof systems can be used to generate proofs and models of modal formulae, and provide an intricate model-theoretic argument showing that such generated models can be encoded as finite objects called 'templates.' By enumerating templates of bound size, we obtain an EXPSPACE decision procedure as a consequence.

相關內容

We propose a linear-complexity method for sampling from truncated multivariate normal (TMVN) distributions with high fidelity by applying nearest-neighbor approximations to a product-of-conditionals decomposition of the TMVN density. To make the sequential sampling based on the decomposition feasible, we introduce a novel method that avoids the intractable high-dimensional TMVN distribution by sampling sequentially from $m$-dimensional TMVN distributions, where $m$ is a tuning parameter controlling the fidelity. This allows us to overcome the existing methods' crucial problem of rapidly decreasing acceptance rates for increasing dimension. Throughout our experiments with up to tens of thousands of dimensions, we can produce high-fidelity samples with $m$ in the dozens, achieving superior scalability compared to existing state-of-the-art methods. We study a tetrachloroethylene concentration dataset that has $3{,}971$ observed responses and $20{,}730$ undetected responses, together modeled as a partially censored Gaussian process, where our method enables posterior inference for the censored responses through sampling a $20{,}730$-dimensional TMVN distribution.

Graph matrices are a type of matrix which has played a crucial role in analyzing the sum of squares hierarchy on average case problems. However, except for rough norm bounds, little is known about graph matrices. In this paper, we take a step towards better understanding graph matrices by determining the limiting distribution of the spectrum of the singular values of Z-shaped graph matrices. We then give a partial generalization of our results for $m$-layer Z-shaped graph matrices.

We computationally completely enumerate a number of types of row-column designs up to isotopism, including double, sesqui and triple arrays as known from the literature, and two newly introduced types that we call mono arrays and AO-arrays. We calculate autotopism group sizes for the designs we generate. For larger parameter values, where complete enumeration is not feasible, we generate examples of some of the designs, and generate exhaustive lists of admissible parameters. For some admissible parameter sets, we prove non-existence results. We also give some explicit constructions of sesqui arrays, mono arrays and AO-arrays, and investigate connections to Youden rectangles and binary pseud Youden designs.

We study the problem of computing pairwise statistics, i.e., ones of the form $\binom{n}{2}^{-1} \sum_{i \ne j} f(x_i, x_j)$, where $x_i$ denotes the input to the $i$th user, with differential privacy (DP) in the local model. This formulation captures important metrics such as Kendall's $\tau$ coefficient, Area Under Curve, Gini's mean difference, Gini's entropy, etc. We give several novel and generic algorithms for the problem, leveraging techniques from DP algorithms for linear queries.

A randomized algorithm for computing a compressed representation of a given rank-structured matrix $A \in \mathbb{R}^{N\times N}$ is presented. The algorithm interacts with $A$ only through its action on vectors. Specifically, it draws two tall thin matrices $\Omega,\,\Psi \in \mathbb{R}^{N\times s}$ from a suitable distribution, and then reconstructs $A$ from the information contained in the set $\{A\Omega,\,\Omega,\,A^{*}\Psi,\,\Psi\}$. For the specific case of a "Hierarchically Block Separable (HBS)" matrix (a.k.a. Hierarchically Semi-Separable matrix) of block rank $k$, the number of samples $s$ required satisfies $s = O(k)$, with $s \approx 3k$ being representative. While a number of randomized algorithms for compressing rank-structured matrices have previously been published, the current algorithm appears to be the first that is both of truly linear complexity (no $N\log(N)$ factors in the complexity bound) and fully "black box" in the sense that no matrix entry evaluation is required. Further, all samples can be extracted in parallel, enabling the algorithm to work in a "streaming" or "single view" mode.

A randomized algorithm for computing a data sparse representation of a given rank structured matrix $A$ (a.k.a. an $H$-matrix) is presented. The algorithm draws on the randomized singular value decomposition (RSVD), and operates under the assumption that algorithms for rapidly applying $A$ and $A^{*}$ to vectors are available. The algorithm analyzes the hierarchical tree that defines the rank structure using graph coloring algorithms to generate a set of random test vectors. The matrix is then applied to the test vectors, and in a final step the matrix itself is reconstructed by the observed input-output pairs. The method presented is an evolution of the "peeling algorithm" of L. Lin, J. Lu, and L. Ying, "Fast construction of hierarchical matrix representation from matrix-vector multiplication," JCP, 230(10), 2011. For the case of uniform trees, the new method substantially reduces the pre-factor of the original peeling algorithm. More significantly, the new technique leads to dramatic acceleration for many non-uniform trees since it constructs sample vectors that are optimized for a given tree. The algorithm is particularly effective for kernel matrices involving a set of points restricted to a lower dimensional object than the ambient space, such as a boundary integral equation defined on a surface in three dimensions.

Mixed Boolean-Arithmetic (MBA) obfuscation is a common technique used to transform simple expressions into semantically equivalent but more complex combinations of boolean and arithmetic operators. Its widespread usage in DRM systems, malware, and software protectors is well documented. In 2021, Liu et al. proposed a groundbreaking method of simplifying linear MBAs, utilizing a hidden two-way transformation between 1-bit and n-bit variables. In 2022, Reichenwallner et al. proposed a similar but more effective method of simplifying linear MBAs, SiMBA, relying on a similar but more involved theorem. However, because current linear MBA simplifiers operate in 1-bit space, they cannot handle expressions which utilize constants inside of their bitwise operands, e.g. (x&1), (x&1111) + (y&1111). We propose an extension to SiMBA that enables simplification of this broader class of expressions. It surpasses peer tools, achieving efficient simplification of a class of MBAs that current simplifiers struggle with.

Multi-Task Evolutionary Optimization (MTEO), an important field focusing on addressing complex problems through optimizing multiple tasks simultaneously, has attracted much attention. While MTEO has been primarily focusing on task similarity, there remains a hugely untapped potential in harnessing the shared characteristics between different domains to enhance evolutionary optimization. For example, real-world complex systems usually share the same characteristics, such as the power-law rule, small-world property, and community structure, thus making it possible to transfer solutions optimized in one system to another to facilitate the optimization. Drawing inspiration from this observation of shared characteristics within complex systems, we set out to extend MTEO to a novel framework - multi-domain evolutionary optimization (MDEO). To examine the performance of the proposed MDEO, we utilize a challenging combinatorial problem of great security concern - community deception in complex networks as the optimization task. To achieve MDEO, we propose a community-based measurement of graph similarity to manage the knowledge transfer among domains. Furthermore, we develop a graph representation-based network alignment model that serves as the conduit for effectively transferring solutions between different domains. Moreover, we devise a self-adaptive mechanism to determine the number of transferred solutions from different domains and introduce a novel mutation operator based on the learned mapping to facilitate the utilization of knowledge from other domains. Experiments on eight real-world networks of different domains demonstrate MDEO superiority in efficacy compared to classical evolutionary optimization. Simulations of attacks on the community validate the effectiveness of the proposed MDEO in safeguarding community security.

In symmetric cryptography, maximum distance separable (MDS) matrices with computationally simple inverses have wide applications. Many block ciphers like AES, SQUARE, SHARK, and hash functions like PHOTON use an MDS matrix in the diffusion layer. In this article, we first characterize all $3 \times 3$ irreducible semi-involutory matrices over the finite field of characteristic $2$. Using this matrix characterization, we provide a necessary and sufficient condition to construct MDS semi-involutory matrices using only their diagonal entries and the entries of an associated diagonal matrix. Finally, we count the number of $3 \times 3$ semi-involutory MDS matrices over any finite field of characteristic $2$.

We give a new coalgebraic semantics for intuitionistic modal logic with $\Box$. In particular, we provide a colagebraic representation of intuitionistic descriptive modal frames and of intuitonistic modal Kripke frames based on image-finite posets. This gives a solution to a problem in the area of coalgebaic logic for these classes of frames, raised explicitly by Litak (2014) and de Groot and Pattinson (2020). Our key technical tool is a recent generalization of a construction by Ghilardi, in the form of a right adjoint to the inclusion of the category of Esakia spaces in the category of Priestley spaces. As an application of these results, we study bisimulations of intuitionistic modal frames, describe dual spaces of free modal Heyting algebras, and provide a path towards a theory of coalgebraic intuitionistic logics.

北京阿比特科技有限公司