This paper proposes a Federated Learning Code Smell Detection (FedCSD) approach that allows organizations to collaboratively train federated ML models while preserving their data privacy. These assertions have been supported by three experiments that have significantly leveraged three manually validated datasets aimed at detecting and examining different code smell scenarios. In experiment 1, which was concerned with a centralized training experiment, dataset two achieved the lowest accuracy (92.30%) with fewer smells, while datasets one and three achieved the highest accuracy with a slight difference (98.90% and 99.5%, respectively). This was followed by experiment 2, which was concerned with cross-evaluation, where each ML model was trained using one dataset, which was then evaluated over the other two datasets. Results from this experiment show a significant drop in the model's accuracy (lowest accuracy: 63.80\%) where fewer smells exist in the training dataset, which has a noticeable reflection (technical debt) on the model's performance. Finally, the last and third experiments evaluate our approach by splitting the dataset into 10 companies. The ML model was trained on the company's site, then all model-updated weights were transferred to the server. Ultimately, an accuracy of 98.34% was achieved by the global model that has been trained using 10 companies for 100 training rounds. The results reveal a slight difference in the global model's accuracy compared to the highest accuracy of the centralized model, which can be ignored in favour of the global model's comprehensive knowledge, lower training cost, preservation of data privacy, and avoidance of the technical debt problem.
In this paper, we propose a No-Reference Image Quality Assessment (NRIQA) guided cut-off point selection (CPS) strategy to enhance the performance of a fine-grained classification system. Scores given by existing NRIQA methods on the same image may vary and not be as independent of natural image augmentations as expected, which weakens their connection and explainability to fine-grained image classification. Taking the three most commonly adopted image augmentation configurations -- cropping, rotating, and blurring -- as the entry point, we formulate a two-step mechanism for selecting the most discriminative subset from a given image dataset by considering both the confidence of model predictions and the density distribution of image qualities over several NRIQA methods. Concretely, the cut-off points yielded by those methods are aggregated via majority voting to inform the process of image subset selection. The efficacy and efficiency of such a mechanism have been confirmed by comparing the models being trained on high-quality images against a combination of high- and low-quality ones, with a range of 0.7% to 4.2% improvement on a commercial product dataset in terms of mean accuracy through four deep neural classifiers. The robustness of the mechanism has been proven by the observations that all the selected high-quality images can work jointly with 70% low-quality images with 1.3% of classification precision sacrificed when using ResNet34 in an ablation study.
This paper presents a novel Fully Binary Point Cloud Transformer (FBPT) model which has the potential to be widely applied and expanded in the fields of robotics and mobile devices. By compressing the weights and activations of a 32-bit full-precision network to 1-bit binary values, the proposed binary point cloud Transformer network significantly reduces the storage footprint and computational resource requirements of neural network models for point cloud processing tasks, compared to full-precision point cloud networks. However, achieving a fully binary point cloud Transformer network, where all parts except the modules specific to the task are binary, poses challenges and bottlenecks in quantizing the activations of Q, K, V and self-attention in the attention module, as they do not adhere to simple probability distributions and can vary with input data. Furthermore, in our network, the binary attention module undergoes a degradation of the self-attention module due to the uniform distribution that occurs after the softmax operation. The primary focus of this paper is on addressing the performance degradation issue caused by the use of binary point cloud Transformer modules. We propose a novel binarization mechanism called dynamic-static hybridization. Specifically, our approach combines static binarization of the overall network model with fine granularity dynamic binarization of data-sensitive components. Furthermore, we make use of a novel hierarchical training scheme to obtain the optimal model and binarization parameters. These above improvements allow the proposed binarization method to outperform binarization methods applied to convolution neural networks when used in point cloud Transformer structures. To demonstrate the superiority of our algorithm, we conducted experiments on two different tasks: point cloud classification and place recognition.
This paper deals with the Multi-robot Exploration (MRE) under communication constraints problem. We propose a novel intermittent rendezvous method that allows robots to explore an unknown environment while sharing maps at rendezvous locations through agreements. In our method, robots update the agreements to spread the rendezvous locations during the exploration and prioritize exploring unknown areas near them. To generate the agreements automatically, we reduced the MRE to instances of the Job Shop Scheduling Problem (JSSP) and ensured intermittent communication through a temporal connectivity graph. We evaluate our method in simulation in various virtual urban environments and a Gazebo simulation using the Robot Operating System (ROS). Our results suggest that our method can be better than using relays or maintaining intermittent communication with a base station since we can explore faster without additional hardware to create a relay network.
Temporal information plays a pivotal role in Bird's-Eye-View (BEV) driving scene understanding, which can alleviate the visual information sparsity. However, the indiscriminate temporal fusion method will cause the barrier of feature redundancy when constructing vectorized High-Definition (HD) maps. In this paper, we revisit the temporal fusion of vectorized HD maps, focusing on temporal instance consistency and temporal map consistency learning. To improve the representation of instances in single-frame maps, we introduce a novel method, DTCLMapper. This approach uses a dual-stream temporal consistency learning module that combines instance embedding with geometry maps. In the instance embedding component, our approach integrates temporal Instance Consistency Learning (ICL), ensuring consistency from vector points and instance features aggregated from points. A vectorized points pre-selection module is employed to enhance the regression efficiency of vector points from each instance. Then aggregated instance features obtained from the vectorized points preselection module are grounded in contrastive learning to realize temporal consistency, where positive and negative samples are selected based on position and semantic information. The geometry mapping component introduces Map Consistency Learning (MCL) designed with self-supervised learning. The MCL enhances the generalization capability of our consistent learning approach by concentrating on the global location and distribution constraints of the instances. Extensive experiments on well-recognized benchmarks indicate that the proposed DTCLMapper achieves state-of-the-art performance in vectorized mapping tasks, reaching 61.9% and 65.1% mAP scores on the nuScenes and Argoverse datasets, respectively. The source code will be made publicly available at //github.com/lynn-yu/DTCLMapper.
Noisy Intermediate-Scale Quantum (NISQ) computers face a critical limitation in qubit numbers, hindering their progression towards large-scale and fault-tolerant quantum computing. A significant challenge impeding scaling is crosstalk, characterized by unwanted interactions among neighboring components on quantum chips, including qubits, resonators, and substrate. We motivate a general approach to systematically resolving multifaceted crosstalks in a limited substrate area. We propose Qplacer, a frequency-aware electrostatic-based placement framework tailored for superconducting quantum computers, to alleviate crosstalk by isolating these components in spatial and frequency domains alongside compact substrate design. Qplacer commences with a frequency assigner that ensures frequency domain isolation for qubits and resonators. It then incorporates a padding strategy and resonator partitioning for layout flexibility. Central to our approach is the conceptualization of quantum components as charged particles, enabling strategic spatial isolation through a 'frequency repulsive force' concept. Our results demonstrate that Qplacer carefully crafts the physical component layout in mitigating various crosstalk impacts while maintaining a compact substrate size. On various device topologies and NISQ benchmarks, Qplacer improves fidelity by an average of 36.7x and reduces spatial violations (susceptible to crosstalk) by an average of 12.76x, compared to classical placement engines. Regarding area optimization, compared to manual designs, Qplacer can reduce the required layout area by 2.14x on average
This study explores the limitations of traditional Cybersecurity Awareness and Training (CSAT) programs and proposes an innovative solution using Generative Pre-Trained Transformers (GPT) to address these shortcomings. Traditional approaches lack personalization and adaptability to individual learning styles. To overcome these challenges, the study integrates GPT models to deliver highly tailored and dynamic cybersecurity learning expe-riences. Leveraging natural language processing capabilities, the proposed approach personalizes training modules based on individual trainee pro-files, helping to ensure engagement and effectiveness. An experiment using a GPT model to provide a real-time and adaptive CSAT experience through generating customized training content. The findings have demonstrated a significant improvement over traditional programs, addressing issues of en-gagement, dynamicity, and relevance. GPT-powered CSAT programs offer a scalable and effective solution to enhance cybersecurity awareness, provid-ing personalized training content that better prepares individuals to miti-gate cybersecurity risks in their specific roles within the organization.
This paper presents a new compressed representation of Boolean functions, called CFLOBDDs (for Context-Free-Language Ordered Binary Decision Diagrams). They are essentially a plug-compatible alternative to BDDs (Binary Decision Diagrams), and hence useful for representing certain classes of functions, matrices, graphs, relations, etc. in a highly compressed fashion. CFLOBDDs share many of the good properties of BDDs, but--in the best case--the CFLOBDD for a Boolean function can be exponentially smaller than any BDD for that function. Compared with the size of the decision tree for a function, a CFLOBDD--again, in the best case--can give a double-exponential reduction in size. They have the potential to permit applications to (i) execute much faster, and (ii) handle much larger problem instances than has been possible heretofore. CFLOBDDs are a new kind of decision diagram that go beyond BDDs (and their many relatives). The key insight is a new way to reuse sub-decision-diagrams: components of CFLOBDDs are structured hierarchically, so that sub-decision-diagrams can be treated as standalone ''procedures'' and reused. We applied CFLOBDDs to the problem of simulating quantum circuits, and found that for several standard problems the improvement in scalability--compared to simulation using BDDs--is quite dramatic. In particular, the number of qubits that could be handled using CFLOBDDs was larger, compared to BDDs, by a factor of 128x for GHZ; 1,024x for BV; 8,192x for DJ; and 128x for Grover's algorithm. (With a 15-minute timeout, the number of qubits that CFLOBDDs can handle are 65,536 for GHZ, 524,288 for BV; 4,194,304 for DJ; and 4,096 for Grover's Algorithm.)
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.