亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Katona and Varga showed that for any rational number $t \in (1/2,1]$, no chordal graph is minimally $t$-tough. We conjecture that no chordal graph is minimally $t$-tough for $t>1/2$ and prove several results supporting the conjecture. In particular, we show that for $t>1/2$, no strongly chordal graph is minimally $t$-tough, no split graph is minimally $t$-tough, and no chordal graph with a universal vertex is minimally $t$-tough.

相關內容

We derive novel and sharp high-dimensional Berry--Esseen bounds for the sum of $m$-dependent random vectors over the class of hyper-rectangles exhibiting only a poly-logarithmic dependence in the dimension. Our results hold under minimal assumptions, such as non-degenerate covariances and finite third moments, and yield a sample complexity of order $\sqrt{m/n}$, aside from logarithmic terms, matching the optimal rates established in the univariate case. When specialized to the sums of independent non-degenerate random vectors, we obtain sharp rates under the weakest possible conditions. On the technical side, we develop an inductive relationship between anti-concentration inequalities and Berry--Esseen bounds, inspired by the classical Lindeberg swapping method and the concentration inequality approach for dependent data, that may be of independent interest.

We study first-order logic (FO) over the structure consisting of finite words over some alphabet $A$, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the $\Sigma_1$ (i.e., existential) fragment is undecidable, already for binary alphabets $A$. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if $|A|\ge 3$, then a relation is definable in the existential fragment over $A$ with constants if and only if it is recursively enumerable. This implies characterizations for all fragments $\Sigma_i$: If $|A|\ge 3$, then a relation is definable in $\Sigma_i$ if and only if it belongs to the $i$-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the $\Sigma_i$-fragments for $i\ge 2$ of the pure logic, where the words of $A^*$ are not available as constants.

Motivated by creating physical theories, formal languages $S$ with variables are considered and a kind of distance between elements of the languages is defined by the formula $d(x,y)= \ell(x \nabla y) - \ell(x) \wedge \ell(y)$, where $\ell$ is a length function and $x \nabla y$ means the united theory of $x$ and $y$. Actually we mainly consider abstract abelian idempotent monoids $(S,\nabla)$ provided with length functions $\ell$. The set of length functions can be projected to another set of length functions such that the distance $d$ is actually a pseudometric and satisfies $d(x\nabla a,y\nabla b) \le d(x,y) + d(a,b)$. We also propose a "signed measure" on the set of Boolean expressions of elements in $S$, and a Banach-Mazur-like distance between abelian, idempotent monoids with length functions, or formal languages.

A class of graphs admits an adjacency labeling scheme of size $b(n)$, if the vertices in each of its $n$-vertex graphs can be assigned binary strings (called labels) of length $b(n)$ so that the adjacency of two vertices can be determined solely from their labels. We give tight bounds on the size of adjacency labels for every family of monotone (i.e., subgraph-closed) classes with a well-behaved growth function between $2^{O(n \log n)}$ and $2^{O(n^{2-\delta})}$ for any $\delta > 0$. Specifically, we show that for any function $f: \mathbb N \to \mathbb R$ satisfying $\log n \leqslant f(n) \leqslant n^{1-\delta}$ for any fixed $\delta > 0$, and some sub-multiplicative condition, there are monotone graph classes with growth $2^{O(nf(n))}$ that do not admit adjacency labels of size at most $f(n) \log n$. On the other hand, any such class does admit adjacency labels of size $O(f(n)\log n)$. Surprisingly this tight bound is a $\Theta(\log n)$ factor away from the information-theoretic bound of $O(f(n))$. The special case when $f = \log$ implies that the recently-refuted Implicit Graph Conjecture [Hatami and Hatami, FOCS 2022] also fails within monotone classes.

A common way to approximate $F(A)b$ -- the action of a matrix function on a vector -- is to use the Arnoldi approximation. Since a new vector needs to be generated and stored in every iteration, one is often forced to rely on restart algorithms which are either not efficient, not stable or only applicable to restricted classes of functions. We present a new representation of the error of the Arnoldi iterates if the function $F$ is given as a Laplace transform. Based on this representation we build an efficient and stable restart algorithm. In doing so we extend earlier work for the class of Stieltjes functions which are special Laplace transforms. We report several numerical experiments including comparisons with the restart method for Stieltjes functions.

Any measure $\mu$ on a CAT(k) space M that is stratified as a finite union of manifolds and has local exponential maps near the Fr\'echet mean $\bar\mu$ yields a continuous "tangential collapse" from the tangent cone of M at $\bar\mu$ to a vector space that preserves the Fr\'echet mean, restricts to an isometry on the "fluctuating cone" of directions in which the Fr\'echet mean can vary under perturbation of $\mu$, and preserves angles between arbitrary and fluctuating tangent vectors at the Fr\'echet mean.

In a prophet inequality problem, $n$ independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent value as reward. We evaluate a stopping rule by the worst-case ratio between its expected reward and the expectation of the maximum variable. In the classic setting, the order is fixed, and the optimal ratio is known to be 1/2. Three variants of this problem have been extensively studied: the prophet-secretary model, where variables arrive in uniformly random order; the free-order model, where the gambler chooses the arrival order; and the i.i.d. model, where the distributions are all the same, rendering the arrival order irrelevant. Most of the literature assumes that distributions are known to the gambler. Recent work has considered the question of what is achievable when the gambler has access only to a few samples per distribution. Surprisingly, in the fixed-order case, a single sample from each distribution is enough to approximate the optimal ratio, but this is not the case in any of the three variants. We provide a unified proof that for all three variants of the problem, a constant number of samples (independent of n) for each distribution is good enough to approximate the optimal ratios. Prior to our work, this was known to be the case only in the i.i.d. variant. We complement our result showing that our algorithms can be implemented in polynomial time. A key ingredient in our proof is an existential result based on a minimax argument, which states that there must exist an algorithm that attains the optimal ratio and does not rely on the knowledge of the upper tail of the distributions. A second key ingredient is a refined sample-based version of a decomposition of the instance into "small" and "large" variables, first introduced by Liu et al. [EC'21].

We provide the first useful, rigorous analysis of ensemble sampling for the stochastic linear bandit setting. In particular, we show that, under standard assumptions, for a $d$-dimensional stochastic linear bandit with an interaction horizon $T$, ensemble sampling with an ensemble of size $m$ on the order of $d \log T$ incurs regret bounded by order $(d \log T)^{5/2} \sqrt{T}$. Ours is the first result in any structured setting not to require the size of the ensemble to scale linearly with $T$ -- which defeats the purpose of ensemble sampling -- while obtaining near $\sqrt{T}$ order regret. Ours is also the first result that allows infinite action sets.

If $G$ is a graph, $A,B$ its induced subgraphs and $f\colon A\to B$ an isomorphism, we say that $f$ is a partial automorphism of $G$. In 1992, Hrushovski proved that graphs have the extension property for partial automorphisms (EPPA, also called the Hrushovski property), that is, for every finite graph $G$ there is a finite graph $H$, its EPPA-witness, such that $G$ is an induced subgraph of $H$ and every partial automorphism of $G$ extends to an automorphism of $H$. The EPPA number of a graph $G$, denoted by $\mathop{\mathrm{eppa}}\nolimits(G)$, is the smallest number of vertices of an EPPA-witness for $G$, and we put $\mathop{\mathrm{eppa}}\nolimits(n) = \max\{\mathop{\mathrm{eppa}}\nolimits(G) : \lvert G\rvert = n\}$. In this note we review the state of the area, improve some lower bounds (in particular, we show that $\mathop{\mathrm{eppa}}\nolimits(n)\geq \frac{2^n}{\sqrt{n}}$, thereby identifying the correct base of the exponential) and pose several open questions. We also briefly discuss EPPA numbers of hypergraphs and directed graphs.

Over the last decades, the family of $\alpha$-stale distributions has proven to be useful for modelling in telecommunication systems. Particularly, in the case of radar applications, finding a fast and accurate estimation for the amplitude density function parameters appears to be very important. In this work, the maximum likelihood estimator (MLE) is proposed for parameters of the amplitude distribution. To do this, the amplitude data are \emph{projected} on the horizontal and vertical axes using two simple transformations. It is proved that the \emph{projected} data follow a zero-location symmetric $\alpha$-stale distribution for which the MLE can be computed quite fast. The average of computed MLEs based on two \emph{projections} is considered as estimator for parameters of the amplitude distribution. Performance of the proposed \emph{projection} method is demonstrated through simulation study and analysis of two sets of real radar data.

北京阿比特科技有限公司