亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of nonlinear stochastic optimal control. This problem is thought to be fundamentally intractable owing to Bellman's infamous "curse of dimensionality". We present a result that shows that repeatedly solving an open-loop deterministic problem from the current state, similar to Model Predictive Control (MPC), results in a feedback policy that is $O(\epsilon^4)$ near to the true global stochastic optimal policy. Furthermore, empirical results show that solving the Stochastic Dynamic Programming (DP) problem is highly susceptible to noise, even when tractable, and in practice, the MPC-type feedback law offers superior performance even for stochastic systems.

相關內容

This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data. We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model with stochastic dynamics. We then analyze this objective function in the context of several state-of-the-art approaches for both linear and nonlinear system ID. In the former, we analyze least squares approaches for Markov parameter estimation, and in the latter, we analyze the multiple shooting approach. We demonstrate the limitations of the optimization problems posed by these existing methods by showing that they can be seen as special cases of the proposed optimization objective under certain simplifying assumptions: conditional independence of data and zero model error. Furthermore, we observe that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID and provide mathematical explanations for these characteristics' origins. Finally, numerical simulations demonstrate a mean squared error over 8.7 times lower compared to multiple shooting when data are noisy and/or sparse. Moreover, the proposed approach can identify accurate and generalizable models even when there are more parameters than data or when the underlying system exhibits chaotic behavior.

We tackle the Few-Shot Open-Set Recognition (FSOSR) problem, i.e. classifying instances among a set of classes for which we only have a few labeled samples, while simultaneously detecting instances that do not belong to any known class. We explore the popular transductive setting, which leverages the unlabelled query instances at inference. Motivated by the observation that existing transductive methods perform poorly in open-set scenarios, we propose a generalization of the maximum likelihood principle, in which latent scores down-weighing the influence of potential outliers are introduced alongside the usual parametric model. Our formulation embeds supervision constraints from the support set and additional penalties discouraging overconfident predictions on the query set. We proceed with a block-coordinate descent, with the latent scores and parametric model co-optimized alternately, thereby benefiting from each other. We call our resulting formulation \textit{Open-Set Likelihood Optimization} (OSLO). OSLO is interpretable and fully modular; it can be applied on top of any pre-trained model seamlessly. Through extensive experiments, we show that our method surpasses existing inductive and transductive methods on both aspects of open-set recognition, namely inlier classification and outlier detection.

In this paper, we consider stochastic versions of three classical growth models given by ordinary differential equations (ODEs). Indeed we use stochastic versions of Von Bertalanffy, Gompertz, and Logistic differential equations as models. We assume that each stochastic differential equation (SDE) has some crucial parameters in the drift to be estimated and we use the Maximum Likelihood Estimator (MLE) to estimate them. For estimating the diffusion parameter, we use the MLE for two cases and the quadratic variation of the data for one of the SDEs. We apply the Akaike information criterion (AIC) to choose the best model for the simulated data. We consider that the AIC is a function of the drift parameter. We present a simulation study to validate our selection method. The proposed methodology could be applied to datasets with continuous and discrete observations, but also with highly sparse data. Indeed, we can use this method even in the extreme case where we have observed only one point for each path, under the condition that we observed a sufficient number of trajectories. For the last two cases, the data can be viewed as incomplete observations of a model with a tractable likelihood function; then, we propose a version of the Expectation Maximization (EM) algorithm to estimate these parameters. This type of datasets typically appears in fishery, for instance.

In this paper, I try to tame "Basu's elephants" (data with extreme selection on observables). I propose new practical large-sample and finite-sample methods for estimating and inferring heterogeneous causal effects (under unconfoundedness) in the empirically relevant context of limited overlap. I develop a general principle called "Stable Probability Weighting" (SPW) that can be used as an alternative to the widely used Inverse Probability Weighting (IPW) technique, which relies on strong overlap. I show that IPW (or its augmented version), when valid, is a special case of the more general SPW (or its doubly robust version), which adjusts for the extremeness of the conditional probabilities of the treatment states. The SPW principle can be implemented using several existing large-sample parametric, semiparametric, and nonparametric procedures for conditional moment models. In addition, I provide new finite-sample results that apply when unconfoundedness is plausible within fine strata. Since IPW estimation relies on the problematic reciprocal of the estimated propensity score, I develop a "Finite-Sample Stable Probability Weighting" (FPW) set-estimator that is unbiased in a sense. I also propose new finite-sample inference methods for testing a general class of weak null hypotheses. The associated computationally convenient methods, which can be used to construct valid confidence sets and to bound the finite-sample confidence distribution, are of independent interest. My large-sample and finite-sample frameworks extend to the setting of multivalued treatments.

A foundational problem in reinforcement learning and interactive decision making is to understand what modeling assumptions lead to sample-efficient learning guarantees, and what algorithm design principles achieve optimal sample complexity. Recently, Foster et al. (2021) introduced the Decision-Estimation Coefficient (DEC), a measure of statistical complexity which leads to upper and lower bounds on the optimal sample complexity for a general class of problems encompassing bandits and reinforcement learning with function approximation. In this paper, we introduce a new variant of the DEC, the Constrained Decision-Estimation Coefficient, and use it to derive new lower bounds that improve upon prior work on three fronts: - They hold in expectation, with no restrictions on the class of algorithms under consideration. - They hold globally, and do not rely on the notion of localization used by Foster et al. (2021). - Most interestingly, they allow the reference model with respect to which the DEC is defined to be improper, establishing that improper reference models play a fundamental role. We provide upper bounds on regret that scale with the same quantity, thereby closing all but one of the gaps between upper and lower bounds in Foster et al. (2021). Our results apply to both the regret framework and PAC framework, and make use of several new analysis and algorithm design techniques that we anticipate will find broader use.

Finding a computable expression for the feedback capacity of channels with colored Gaussian, additive noise is a long standing open problem. In this paper, we solve this problem in the scenario where the channel has multiple inputs and multiple outputs (MIMO) and the noise process is generated as the output of a time-invariant state-space model. Our main result is a computable expression for the feedback capacity in terms of a finite-dimensional convex optimization. The solution to the feedback capacity problem is obtained by formulating the finite-block counterpart of the capacity problem as a \emph{sequential convex optimization problem} which leads in turn to a single-letter upper bound. This converse derivation integrates tools and ideas from information theory, control, filtering and convex optimization. A tight lower bound is realized by optimizing over a family of time-invariant policies thus showing that time-invariant inputs are optimal even when the noise process may not be stationary. The optimal time-invariant policy is used to construct a capacity-achieving and simple coding scheme for scalar channels, and its analysis reveals an interesting relation between a smoothing problem and the feedback capacity expression.

Tuning optimizer hyperparameters, notably the learning rate to a particular optimization instance, is an important but nonconvex problem. Therefore iterative optimization methods such as hypergradient descent lack global optimality guarantees in general. We propose an online nonstochastic control methodology for mathematical optimization. The choice of hyperparameters for gradient based methods, including the learning rate, momentum parameter and preconditioner, is described as feedback control. The optimal solution to this control problem is shown to encompass preconditioned adaptive gradient methods with varying acceleration and momentum parameters. Although the optimal control problem by itself is nonconvex, we show how recent methods from online nonstochastic control based on convex relaxation can be applied to compete with the best offline solution. This guarantees that in episodic optimization, we converge to the best optimization method in hindsight.

The implicit trace estimation problem asks for an approximation of the trace of a square matrix, accessed via matrix-vector products (matvecs). This paper designs new randomized algorithms, XTrace and XNysTrace, for the trace estimation problem by exploiting both variance reduction and the exchangeability principle. For a fixed budget of matvecs, numerical experiments show that the new methods can achieve errors that are orders of magnitude smaller than existing algorithms, such as the Girard-Hutchinson estimator or the Hutch++ estimator. A theoretical analysis confirms the benefits by offering a precise description of the performance of these algorithms as a function of the spectrum of the input matrix. The paper also develops an exchangeable estimator, XDiag, for approximating the diagonal of a square matrix using matvecs.

This paper studies computationally and theoretically attractive estimators called the Laplace type estimators (LTE), which include means and quantiles of Quasi-posterior distributions defined as transformations of general (non-likelihood-based) statistical criterion functions, such as those in GMM, nonlinear IV, empirical likelihood, and minimum distance methods. The approach generates an alternative to classical extremum estimation and also falls outside the parametric Bayesian approach. For example, it offers a new attractive estimation method for such important semi-parametric problems as censored and instrumental quantile, nonlinear GMM and value-at-risk models. The LTE's are computed using Markov Chain Monte Carlo methods, which help circumvent the computational curse of dimensionality. A large sample theory is obtained for regular cases.

A practical challenge for structural estimation is the requirement to accurately minimize a sample objective function which is often non-smooth, non-convex, or both. This paper proposes a simple algorithm designed to find accurate solutions without performing an exhaustive search. It augments each iteration from a new Gauss-Newton algorithm with a grid search step. A finite sample analysis derives its optimization and statistical properties simultaneously using only econometric assumptions. After a finite number of iterations, the algorithm automatically transitions from global to fast local convergence, producing accurate estimates with high probability. Simulated examples and an empirical application illustrate the results.

北京阿比特科技有限公司