The long-term goal of this work is the development of high-fidelity simulation tools for dispersive tsunami propagation. A dispersive model is especially important for short wavelength phenomena such as an asteroid impact into the ocean, and is also important in modeling other events where the simpler shallow water equations are insufficient. Adaptive simulations are crucial to bridge the scales from deep ocean to inundation, but have difficulties with the implicit system of equations that results from dispersive models. We propose a fractional step scheme that advances the solution on separate patches with different spatial resolutions and time steps. We show a simulation with 7 levels of adaptive meshes and onshore inundation resulting from a simulated asteroid impact off the coast of Washington. Finally, we discuss a number of open research questions that need to be resolved for high quality simulations.
Rapid detection of spatial events that propagate across a sensor network is of wide interest in many modern applications. In particular, in communications, radar, environmental monitoring, and biosurveillance, we may observe propagating fields or particles. In this paper, we propose Bayesian single and multiple change-point detection procedures for the rapid detection of propagating spatial events. It is assumed that the spatial event propagates across a network of sensors according to the physical properties of the source causing the event. The multi-sensor system configuration is arbitrary and sensors may be mobile. We begin by considering a single spatial event and are interested in detecting this event as quickly as possible, while controlling the probability of false alarm. Using a dynamic programming framework we derive the structure of the optimal procedure, which minimizes the average detection delay (ADD) subject to a false alarm probability upper bound. In the rare event regime, the optimal procedure converges to a more practical threshold test on the posterior probability of the change point. A convenient recursive computation of this posterior probability is derived by using the propagation pattern of the spatial event. The ADD of the posterior probability threshold test is analyzed in the asymptotic regime, and specific analysis is conducted in the setting of detecting attenuating random signals. Then, we show how the proposed procedure is easy to extend for detecting multiple propagating spatial events in parallel. A method that provides false discovery rate (FDR) control is proposed. In the simulation section, it is clearly demonstrated that exploiting the spatial properties of the event decreases the ADD compared to procedures that do not utilize this information, even under model mismatch.
Reconfigurable intelligent surfaces (RISs) represent a promising candidate for sixth-generation (6G) wireless networks, as the RIS technology provides a new solution to control the propagation channel in order to improve the efficiency of a wireless link through enhancing the received signal power. In this paper, we propose RIS-assisted receive quadrature space-shift keying (RIS-RQSSK), which enhances the spectral efficiency of an RIS-based index modulation (IM) system by using the real and imaginary dimensions independently for the purpose of IM. Therefore, the error rate performance of the system is improved as all RIS elements reflect the incident transmit signal toward both selected receive antennas. At the receiver, a low-complexity but effective greedy detector (GD) can be employed which determines the maximum energy per dimension at the receive antennas. A max-min optimization problem is defined to maximize the received signal-to-noise ratio (SNR) components at both selected receive antennas; an analytical solution is provided based on Lagrange duality. In particular, the multi-variable optimization problem is shown to reduce to the solution of a single-variable equation, which results in a very simple design procedure. In addition, we investigate the average bit error probability (ABEP) of the proposed RIS-RQSSK system and derive a closed-form approximate upper bound on the ABEP. We also provide extensive numerical simulations to validate our derivations. Numerical results show that the proposed RIS-RQSSK scheme substantially outperforms recent prominent benchmark schemes. This enhancement considerably increases with an increasing number of receive antennas.
This paper considers an active intelligent reflecting surface (IRS)-aided wireless powered communication network (WPCN), where devices first harvest energy and then transmit information to a hybrid access point (HAP). Different from the existing works on passive IRS-aided WPCNs, this is the first work that introduces the active IRS in WPCNs. To guarantee the fairness, the problem is formulated as an amplifying power-limited weighted sum throughput (WST) maximization problem, which is solved by successive convex approximation technique and fractional programming alternatively. To balance the performance and complexity tradeoff, three beamforming setups are considered at the active IRS, namely user-adaptive IRS beamforming, uplink-adaptive IRS beamforming, and static IRS beamforming. Numerical results demonstrate the significant superiority of employing active IRS in WPCNs and the benefits of dynamic IRS beamforming. Specifically, it is found that compared to the passive IRS, active IRS not only improves the WST greatly, but also is more energy-efficient and can significantly extend the transmission coverage. Moreover, different from the symmetric deployment strategy of passive IRS, it is more preferable to deploy the active IRS near the devices.
One of the central problems in machine learning is domain adaptation. Unlike past theoretical work, we consider a new model for subpopulation shift in the input or representation space. In this work, we propose a provably effective framework for domain adaptation based on label propagation. In our analysis, we use a simple but realistic ``expansion'' assumption, proposed in \citet{wei2021theoretical}. Using a teacher classifier trained on the source domain, our algorithm not only propagates to the target domain but also improves upon the teacher. By leveraging existing generalization bounds, we also obtain end-to-end finite-sample guarantees on the entire algorithm. In addition, we extend our theoretical framework to a more general setting of source-to-target transfer based on a third unlabeled dataset, which can be easily applied in various learning scenarios.
Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.
Adder Neural Networks (ANNs) which only contain additions bring us a new way of developing deep neural networks with low energy consumption. Unfortunately, there is an accuracy drop when replacing all convolution filters by adder filters. The main reason here is the optimization difficulty of ANNs using $\ell_1$-norm, in which the estimation of gradient in back propagation is inaccurate. In this paper, we present a novel method for further improving the performance of ANNs without increasing the trainable parameters via a progressive kernel based knowledge distillation (PKKD) method. A convolutional neural network (CNN) with the same architecture is simultaneously initialized and trained as a teacher network, features and weights of ANN and CNN will be transformed to a new space to eliminate the accuracy drop. The similarity is conducted in a higher-dimensional space to disentangle the difference of their distributions using a kernel based method. Finally, the desired ANN is learned based on the information from both the ground-truth and teacher, progressively. The effectiveness of the proposed method for learning ANN with higher performance is then well-verified on several benchmarks. For instance, the ANN-50 trained using the proposed PKKD method obtains a 76.8\% top-1 accuracy on ImageNet dataset, which is 0.6\% higher than that of the ResNet-50.
This paper studies the single image super-resolution problem using adder neural networks (AdderNet). Compared with convolutional neural networks, AdderNet utilizing additions to calculate the output features thus avoid massive energy consumptions of conventional multiplications. However, it is very hard to directly inherit the existing success of AdderNet on large-scale image classification to the image super-resolution task due to the different calculation paradigm. Specifically, the adder operation cannot easily learn the identity mapping, which is essential for image processing tasks. In addition, the functionality of high-pass filters cannot be ensured by AdderNet. To this end, we thoroughly analyze the relationship between an adder operation and the identity mapping and insert shortcuts to enhance the performance of SR models using adder networks. Then, we develop a learnable power activation for adjusting the feature distribution and refining details. Experiments conducted on several benchmark models and datasets demonstrate that, our image super-resolution models using AdderNet can achieve comparable performance and visual quality to that of their CNN baselines with an about 2$\times$ reduction on the energy consumption.
Transferring image-based object detectors to domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between performance and computational complexity. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can hinder it from establishing the spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparse strides and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense feature Transforming (DFT) are introduced to model temporal appearance and enrich feature representation respectively. Finally, a novel framework for video object detection is proposed. Experiments on ImageNet VID are conducted. Our framework achieves a state-of-the-art speed-accuracy trade-off with significantly reduced model capacity.
This review paper discusses how context has been used in neural machine translation (NMT) in the past two years (2017-2018). Starting with a brief retrospect on the rapid evolution of NMT models, the paper then reviews studies that evaluate NMT output from various perspectives, with emphasis on those analyzing limitations of the translation of contextual phenomena. In a subsequent version, the paper will then present the main methods that were proposed to leverage context for improving translation quality, and distinguishes methods that aim to improve the translation of specific phenomena from those that consider a wider unstructured context.
In two-phase image segmentation, convex relaxation has allowed global minimisers to be computed for a variety of data fitting terms. Many efficient approaches exist to compute a solution quickly. However, we consider whether the nature of the data fitting in this formulation allows for reasonable assumptions to be made about the solution that can improve the computational performance further. In particular, we employ a well known dual formulation of this problem and solve the corresponding equations in a restricted domain. We present experimental results that explore the dependence of the solution on this restriction and quantify imrovements in the computational performance. This approach can be extended to analogous methods simply and could provide an efficient alternative for problems of this type.