亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose two new doxastic extensions of fuzzy \L ukasiewicz logic in which their semantics are Kripke-based with both fuzzy atomic propositions and fuzzy accessibility relations. A class of these extensions is equipped with uninformed belief operator, and the other class is based on a new notion of skeptical belief. We model a fuzzy version of muddy children problem and a CPA-security experiment using uniformed belief and skeptical belief, respectively. Moreover, we prove soundness and completeness for both of these belief extensions.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Logistic Bandits have recently undergone careful scrutiny by virtue of their combined theoretical and practical relevance. This research effort delivered statistically efficient algorithms, improving the regret of previous strategies by exponentially large factors. Such algorithms are however strikingly costly as they require $\Omega(t)$ operations at each round. On the other hand, a different line of research focused on computational efficiency ($\mathcal{O}(1)$ per-round cost), but at the cost of letting go of the aforementioned exponential improvements. Obtaining the best of both world is unfortunately not a matter of marrying both approaches. Instead we introduce a new learning procedure for Logistic Bandits. It yields confidence sets which sufficient statistics can be easily maintained online without sacrificing statistical tightness. Combined with efficient planning mechanisms we design fast algorithms which regret performance still match the problem-dependent lower-bound of Abeille et al. (2021). To the best of our knowledge, those are the first Logistic Bandit algorithms that simultaneously enjoy statistical and computational efficiency.

It is widely accepted that every system should be robust in that "small" violations of environment assumptions should lead to "small" violations of system guarantees, but it is less clear how to make this intuition mathematically precise. While significant efforts have been devoted to providing notions of robustness for Linear Temporal Logic (LTL), branching-time logic, such as Computation Tree Logic (CTL) and CTL*, have received less attention in this regard. To address this shortcoming, we develop "robust" extensions of CTL and CTL*, which we name robust CTL (rCTL) and robust CTL* (rCTL*). Both extensions are syntactically similar to their parent logics but employ multi-valued semantics to distinguish between "large" and "small" violations of the specification. We show that the multi-valued semantics of rCTL make it more expressive than CTL, while rCTL* is as expressive as CTL*. Moreover, we devise efficient model checking algorithms for rCTL and rCTL*, which have the same asymptotic time complexity as the model checking algorithms for CTL and CTL*, respectively.

Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as $d$-logics. Unlike logics based on the topological closure operator, $d$-logics have not previously been studied in the framework of dynamical systems, which are pairs $(X,f)$ consisting of a topological space $X$ equipped with a continuous function $f\colon X\to X$. We introduce the logics $\bf{wK4C}$, $\bf{K4C}$ and $\bf{GLC}$ and show that they all have the finite Kripke model property and are sound and complete with respect to the $d$-semantics in this dynamical setting. In particular, we prove that $\bf{wK4C}$ is the $d$-logic of all dynamic topological systems, $\bf{K4C}$ is the $d$-logic of all $T_D$ dynamic topological systems, and $\bf{GLC}$ is the $d$-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where $f$ is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems $\bf{wK4H}$, $\bf{K4H}$ and $\bf{GLH}$. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological $d$-logics. Furthermore, our result for $\bf{GLC}$ constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation $\mathord{-}$ something known to be impossible over the class of all spaces.

Matching logic is a formalism for specifying and reasoning about structures using patterns and pattern matching. Growing in popularity, matching logic has been used to define many logical systems such as separation logic with recursive definitions and linear-temporal logic. Despite this, there is no way for a user to define his or her own matching logic theories using a theorem prover, with maximal assurance of the properties being proved. Hence, in this work, we formalized a version of matching logic using the Coq proof assistant. Specifically, we create a new version of matching logic that uses a locally nameless representation, where quantified variables are unnamed in order to aid verification. We formalize the syntax, semantics, and proof system of this representation of matching logic using the Coq proof assistant. Crucially, we also verify the soundness of the formalized proof system, thereby guaranteeing that any matching logic properties proved in our Coq formalization are indeed correct. We believe this work provides a previously unexplored avenue for defining and proving matching logic theories and properties.

Applications of machine learning in the non-profit and public sectors often feature an iterative workflow of data acquisition, prediction, and optimization of interventions. There are four major pain points that a machine learning pipeline must overcome in order to be actually useful in these settings: small data, data collected only under the default intervention, unmodeled objectives due to communication gap, and unforeseen consequences of the intervention. In this paper, we introduce bandit data-driven optimization, the first iterative prediction-prescription framework to address these pain points. Bandit data-driven optimization combines the advantages of online bandit learning and offline predictive analytics in an integrated framework. We propose PROOF, a novel algorithm for this framework and formally prove that it has no-regret. Using numerical simulations, we show that PROOF achieves superior performance than existing baseline. We also apply PROOF in a detailed case study of food rescue volunteer recommendation, and show that PROOF as a framework works well with the intricacies of ML models in real-world AI for non-profit and public sector applications.

One of the fundamental problems in Artificial Intelligence is to perform complex multi-hop logical reasoning over the facts captured by a knowledge graph (KG). This problem is challenging, because KGs can be massive and incomplete. Recent approaches embed KG entities in a low dimensional space and then use these embeddings to find the answer entities. However, it has been an outstanding challenge of how to handle arbitrary first-order logic (FOL) queries as present methods are limited to only a subset of FOL operators. In particular, the negation operator is not supported. An additional limitation of present methods is also that they cannot naturally model uncertainty. Here, we present BetaE, a probabilistic embedding framework for answering arbitrary FOL queries over KGs. BetaE is the first method that can handle a complete set of first-order logical operations: conjunction ($\wedge$), disjunction ($\vee$), and negation ($\neg$). A key insight of BetaE is to use probabilistic distributions with bounded support, specifically the Beta distribution, and embed queries/entities as distributions, which as a consequence allows us to also faithfully model uncertainty. Logical operations are performed in the embedding space by neural operators over the probabilistic embeddings. We demonstrate the performance of BetaE on answering arbitrary FOL queries on three large, incomplete KGs. While being more general, BetaE also increases relative performance by up to 25.4% over the current state-of-the-art KG reasoning methods that can only handle conjunctive queries without negation.

Human parsing is for pixel-wise human semantic understanding. As human bodies are underlying hierarchically structured, how to model human structures is the central theme in this task. Focusing on this, we seek to simultaneously exploit the representational capacity of deep graph networks and the hierarchical human structures. In particular, we provide following two contributions. First, three kinds of part relations, i.e., decomposition, composition, and dependency, are, for the first time, completely and precisely described by three distinct relation networks. This is in stark contrast to previous parsers, which only focus on a portion of the relations and adopt a type-agnostic relation modeling strategy. More expressive relation information can be captured by explicitly imposing the parameters in the relation networks to satisfy the specific characteristics of different relations. Second, previous parsers largely ignore the need for an approximation algorithm over the loopy human hierarchy, while we instead address an iterative reasoning process, by assimilating generic message-passing networks with their edge-typed, convolutional counterparts. With these efforts, our parser lays the foundation for more sophisticated and flexible human relation patterns of reasoning. Comprehensive experiments on five datasets demonstrate that our parser sets a new state-of-the-art on each.

Knowledge graph reasoning, which aims at predicting the missing facts through reasoning with the observed facts, is critical to many applications. Such a problem has been widely explored by traditional logic rule-based approaches and recent knowledge graph embedding methods. A principled logic rule-based approach is the Markov Logic Network (MLN), which is able to leverage domain knowledge with first-order logic and meanwhile handle their uncertainty. However, the inference of MLNs is usually very difficult due to the complicated graph structures. Different from MLNs, knowledge graph embedding methods (e.g. TransE, DistMult) learn effective entity and relation embeddings for reasoning, which are much more effective and efficient. However, they are unable to leverage domain knowledge. In this paper, we propose the probabilistic Logic Neural Network (pLogicNet), which combines the advantages of both methods. A pLogicNet defines the joint distribution of all possible triplets by using a Markov logic network with first-order logic, which can be efficiently optimized with the variational EM algorithm. In the E-step, a knowledge graph embedding model is used for inferring the missing triplets, while in the M-step, the weights of logic rules are updated based on both the observed and predicted triplets. Experiments on multiple knowledge graphs prove the effectiveness of pLogicNet over many competitive baselines.

Large scale knowledge graph embedding has attracted much attention from both academia and industry in the field of Artificial Intelligence. However, most existing methods concentrate solely on fact triples contained in the given knowledge graph. Inspired by the fact that logic rules can provide a flexible and declarative language for expressing rich background knowledge, it is natural to integrate logic rules into knowledge graph embedding, to transfer human knowledge to entity and relation embedding, and strengthen the learning process. In this paper, we propose a novel logic rule-enhanced method which can be easily integrated with any translation based knowledge graph embedding model, such as TransE . We first introduce a method to automatically mine the logic rules and corresponding confidences from the triples. And then, to put both triples and mined logic rules within the same semantic space, all triples in the knowledge graph are represented as first-order logic. Finally, we define several operations on the first-order logic and minimize a global loss over both of the mined logic rules and the transformed first-order logics. We conduct extensive experiments for link prediction and triple classification on three datasets: WN18, FB166, and FB15K. Experiments show that the rule-enhanced method can significantly improve the performance of several baselines. The highlight of our model is that the filtered Hits@1, which is a pivotal evaluation in the knowledge inference task, has a significant improvement (up to 700% improvement).

This paper addresses the problem of viewpoint estimation of an object in a given image. It presents five key insights that should be taken into consideration when designing a CNN that solves the problem. Based on these insights, the paper proposes a network in which (i) The architecture jointly solves detection, classification, and viewpoint estimation. (ii) New types of data are added and trained on. (iii) A novel loss function, which takes into account both the geometry of the problem and the new types of data, is propose. Our network improves the state-of-the-art results for this problem by 9.8%.

北京阿比特科技有限公司