亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A unified and versatile LiDAR segmentation model with strong robustness and generalizability is desirable for safe autonomous driving perception. This work presents M3Net, a one-of-a-kind framework for fulfilling multi-task, multi-dataset, multi-modality LiDAR segmentation in a universal manner using just a single set of parameters. To better exploit data volume and diversity, we first combine large-scale driving datasets acquired by different types of sensors from diverse scenes and then conduct alignments in three spaces, namely data, feature, and label spaces, during the training. As a result, M3Net is capable of taming heterogeneous data for training state-of-the-art LiDAR segmentation models. Extensive experiments on twelve LiDAR segmentation datasets verify our effectiveness. Notably, using a shared set of parameters, M3Net achieves 75.1%, 83.1%, and 72.4% mIoU scores, respectively, on the official benchmarks of SemanticKITTI, nuScenes, and Waymo Open.

相關內容

Stable locomotion in precipitous environments is an essential task for quadruped robots, requiring the ability to resist various external disturbances. Recent neural policies enhance robustness against disturbances by learning to resist external forces sampled from a fixed distribution in the simulated environment. However, the force generation process doesn't consider the robot's current state, making it difficult to identify the most effective direction and magnitude that can push the robot to the most unstable but recoverable state. Thus, challenging cases in the buffer are insufficient to optimize robustness. In this paper, we propose to model the robust locomotion learning process as an adversarial interaction between the locomotion policy and a learnable disturbance that is conditioned on the robot state to generate appropriate external forces. To make the joint optimization stable, our novel $H_{\infty}$ constraint mandates the bound of the ratio between the cost and the intensity of the external forces. We verify the robustness of our approach in both simulated environments and real-world deployment, on quadrupedal locomotion tasks and a more challenging task where the quadruped performs locomotion merely on hind legs. Training and deployment code will be made public.

Learning modular object-centric representations is crucial for systematic generalization. Existing methods show promising object-binding capabilities empirically, but theoretical identifiability guarantees remain relatively underdeveloped. Understanding when object-centric representations can theoretically be identified is crucial for scaling slot-based methods to high-dimensional images with correctness guarantees. To that end, we propose a probabilistic slot-attention algorithm that imposes an aggregate mixture prior over object-centric slot representations, thereby providing slot identifiability guarantees without supervision, up to an equivalence relation. We provide empirical verification of our theoretical identifiability result using both simple 2-dimensional data and high-resolution imaging datasets.

Distribution-free prediction sets play a pivotal role in uncertainty quantification for complex statistical models. Their validity hinges on reliable calibration data, which may not be readily available as real-world environments often undergo unknown changes over time. In this paper, we propose a strategy for choosing an adaptive window and use the data therein to construct prediction sets. The window is selected by optimizing an estimated bias-variance tradeoff. We provide sharp coverage guarantees for our method, showing its adaptivity to the underlying temporal drift. We also illustrate its efficacy through numerical experiments on synthetic and real data.

Modeling open hole failure of composites is a complex task, consisting in a highly nonlinear response with interacting failure modes. Numerical modeling of this phenomenon has traditionally been based on the finite element method, but requires to tradeoff between high fidelity and computational cost. To mitigate this shortcoming, recent work has leveraged machine learning to predict the strength of open hole composite specimens. Here, we also propose using data-based models but to tackle open hole composite failure from a classification point of view. More specifically, we show how to train surrogate models to learn the ultimate failure envelope of an open hole composite plate under in-plane loading. To achieve this, we solve the classification problem via support vector machine (SVM) and test different classifiers by changing the SVM kernel function. The flexibility of kernel-based SVM also allows us to integrate the recently developed quantum kernels in our algorithm and compare them with the standard radial basis function (RBF) kernel. Finally, thanks to kernel-target alignment optimization, we tune the free parameters of all kernels to best separate safe and failure-inducing loading states. The results show classification accuracies higher than 90% for RBF, especially after alignment, followed closely by the quantum kernel classifiers.

Efficient numerical optimization methods can improve performance and reduce the environmental impact of computing in many applications. This work presents a proof-of-concept study combining primitive state representations and agent-environment interactions as first-order optimizers in the setting of budget-limited optimization. Through reinforcement learning (RL) over a set of training instances of an optimization problem class, optimal policies for sequential update selection of algorithmic iteration steps are approximated in generally formulated low-dimensional partial state representations that consider aspects of progress and resource use. For the investigated case studies, deployment of the trained agents to unseen instances of the quadratic optimization problem classes outperformed conventional optimal algorithms with optimized hyperparameters. The results show that elementary RL methods combined with succinct partial state representations can be used as heuristics to manage complexity in RL-based optimization, paving the way for agentic optimization approaches.

The development of foundation models has revolutionized our ability to interpret the Earth's surface using satellite observational data. Traditional models have been siloed, tailored to specific sensors or data types like optical, radar, and hyperspectral, each with its own unique characteristics. This specialization hinders the potential for a holistic analysis that could benefit from the combined strengths of these diverse data sources. Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science to integrate various data modalities into a single framework adaptively. This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks, including sensors never seen during pretraining. DOFA's innovative design offers a promising leap towards more accurate, efficient, and unified Earth observation analysis, showcasing remarkable adaptability and performance in harnessing the potential of multimodal Earth observation data.

With the increasingly powerful performances and enormous scales of pretrained models, promoting parameter efficiency in fine-tuning has become a crucial need for effective and efficient adaptation to various downstream tasks. One representative line of fine-tuning methods is Orthogonal Fine-tuning (OFT), which rigorously preserves the angular distances within the parameter space to preserve the pretrained knowledge. Despite the empirical effectiveness, OFT still suffers low parameter efficiency at $\mathcal{O}(d^2)$ and limited capability of downstream adaptation. Inspired by Givens rotation, in this paper, we proposed quasi-Givens Orthogonal Fine-Tuning (qGOFT) to address the problems. We first use $\mathcal{O}(d)$ Givens rotations to accomplish arbitrary orthogonal transformation in $SO(d)$ with provable equivalence, reducing parameter complexity from $\mathcal{O}(d^2)$ to $\mathcal{O}(d)$. Then we introduce flexible norm and relative angular adjustments under soft orthogonality regularization to enhance the adaptation capability of downstream semantic deviations. Extensive experiments on various tasks and pretrained models validate the effectiveness of our methods.

The ability to learn compact, high-quality, and easy-to-optimize representations for visual data is paramount to many applications such as novel view synthesis and 3D reconstruction. Recent work has shown substantial success in using tensor networks to design such compact and high-quality representations. However, the ability to optimize tensor-based representations, and in particular, the highly compact tensor train representation, is still lacking. This has prevented practitioners from deploying the full potential of tensor networks for visual data. To this end, we propose 'Prolongation Upsampling Tensor Train (PuTT)', a novel method for learning tensor train representations in a coarse-to-fine manner. Our method involves the prolonging or `upsampling' of a learned tensor train representation, creating a sequence of 'coarse-to-fine' tensor trains that are incrementally refined. We evaluate our representation along three axes: (1). compression, (2). denoising capability, and (3). image completion capability. To assess these axes, we consider the tasks of image fitting, 3D fitting, and novel view synthesis, where our method shows an improved performance compared to state-of-the-art tensor-based methods. For full results see our project webpage: //sebulo.github.io/PuTT_website/

Eliciting reasoning capabilities from language models (LMs) is a critical direction on the path towards building intelligent systems. Most recent studies dedicated to reasoning focus on out-of-distribution performance on procedurally-generated synthetic benchmarks, bespoke-built to evaluate specific skills only. This trend makes results hard to transfer across publications, slowing down progress. Three years ago, a similar issue was identified and rectified in the field of neural algorithmic reasoning, with the advent of the CLRS benchmark. CLRS is a dataset generator comprising graph execution traces of classical algorithms from the Introduction to Algorithms textbook. Inspired by this, we propose CLRS-Text -- a textual version of these algorithmic traces. Out of the box, CLRS-Text is capable of procedurally generating trace data for thirty diverse, challenging algorithmic tasks across any desirable input distribution, while offering a standard pipeline in which any additional algorithmic tasks may be created in the benchmark. We fine-tune and evaluate various LMs as generalist executors on this benchmark, validating prior work and revealing a novel, interesting challenge for the LM reasoning community. Our code is available at //github.com/google-deepmind/clrs/tree/master/clrs/_src/clrs_text.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司