亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Shapley values are among the most popular tools for explaining predictions of blackbox machine learning models. However, their high computational cost motivates the use of sampling approximations, inducing a considerable degree of uncertainty. To stabilize these model explanations, we propose ControlSHAP, an approach based on the Monte Carlo technique of control variates. Our methodology is applicable to any machine learning model and requires virtually no extra computation or modeling effort. On several high-dimensional datasets, we find it can produce dramatic reductions in the Monte Carlo variability of Shapley estimates.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · 情景 · 縮放 · Extensibility ·
2024 年 5 月 27 日

Simulation is a powerful tool to better understand physical systems, but generally requires computationally expensive numerical methods. Downstream applications of such simulations can become computationally infeasible if they require many forward solves, for example in the case of inverse design with many degrees of freedom. In this work, we investigate and extend neural PDE solvers as a tool to aid in scaling simulations for two-phase flow problems, and simulations of oil expulsion from a pore specifically. We extend existing numerical methods for this problem to a more complex setting involving varying geometries of the domain to generate a challenging dataset. Further, we investigate three prominent neural PDE solver methods, namely the UNet, DRN and U-FNO, and extend them for characteristics of the oil-expulsion problem: (1) spatial conditioning on the geometry; (2) periodicity in the boundary; (3) approximate mass conservation. We scale all methods and benchmark their speed-accuracy trade-off, evaluate qualitative properties, and perform an ablation study. We find that the investigated methods can accurately model the droplet dynamics with up to three orders of magnitude speed-up, that our extensions improve performance over the baselines, and that the introduced varying geometries constitute a significantly more challenging setting over the previously considered oil expulsion problem.

Reinforcement learning from human feedback (RLHF) has been an effective technique for aligning AI systems with human values, with remarkable successes in fine-tuning large-language models recently. Most existing RLHF paradigms make the underlying assumption that human preferences are relatively homogeneous, and can be encoded by a single reward model. In this paper, we focus on addressing the issues due to the inherent heterogeneity in human preferences, as well as their potential strategic behavior in providing feedback. Specifically, we propose two frameworks to address heterogeneous human feedback in principled ways: personalization-based one and aggregation-based one. For the former, we propose two approaches based on representation learning and clustering, respectively, for learning multiple reward models that trades off the bias (due to preference heterogeneity) and variance (due to the use of fewer data for learning each model by personalization). We then establish sample complexity guarantees for both approaches. For the latter, we aim to adhere to the single-model framework, as already deployed in the current RLHF paradigm, by carefully aggregating diverse and truthful preferences from humans. We propose two approaches based on reward and preference aggregation, respectively: the former utilizes both utilitarianism and Leximin approaches to aggregate individual reward models, with sample complexity guarantees; the latter directly aggregates the human feedback in the form of probabilistic opinions. Under the probabilistic-opinion-feedback model, we also develop an approach to handle strategic human labelers who may bias and manipulate the aggregated preferences with untruthful feedback. Based on the ideas in mechanism design, our approach ensures truthful preference reporting, with the induced aggregation rule maximizing social welfare functions.

To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.

We analyse abstract data types that model numerical structures with a concept of error. Specifically, we focus on arithmetic data types that contain an error value $\bot$ whose main purpose is to always return a value for division. To rings and fields, we add a division operator $x/y$ and study a class of algebras called common meadows wherein $x/0 = \bot$. The set of equations true in all common meadows is named the equational theory of common meadows. We give a finite equational axiomatisation of the equational theory of common meadows and prove that it is complete and that the equational theory is decidable.

Optimal transport has been very successful for various machine learning tasks; however, it is known to suffer from the curse of dimensionality. Hence, dimensionality reduction is desirable when applied to high-dimensional data with low-dimensional structures. The kernel max-sliced (KMS) Wasserstein distance is developed for this purpose by finding an optimal nonlinear mapping that reduces data into $1$ dimensions before computing the Wasserstein distance. However, its theoretical properties have not yet been fully developed. In this paper, we provide sharp finite-sample guarantees under milder technical assumptions compared with state-of-the-art for the KMS $p$-Wasserstein distance between two empirical distributions with $n$ samples for general $p\in[1,\infty)$. Algorithm-wise, we show that computing the KMS $2$-Wasserstein distance is NP-hard, and then we further propose a semidefinite relaxation (SDR) formulation (which can be solved efficiently in polynomial time) and provide a relaxation gap for the SDP solution. We provide numerical examples to demonstrate the good performance of our scheme for high-dimensional two-sample testing.

This study examines the global behavior of dynamics in learning in games between two players, X and Y. We consider the simplest situation for memory asymmetry between two players: X memorizes the other Y's previous action and uses reactive strategies, while Y has no memory. Although this memory complicates the learning dynamics, we discover two novel quantities that characterize the global behavior of such complex dynamics. One is an extended Kullback-Leibler divergence from the Nash equilibrium, a well-known conserved quantity from previous studies. The other is a family of Lyapunov functions of X's reactive strategy. These two quantities capture the global behavior in which X's strategy becomes more exploitative, and the exploited Y's strategy converges to the Nash equilibrium. Indeed, we theoretically prove that Y's strategy globally converges to the Nash equilibrium in the simplest game equipped with an equilibrium in the interior of strategy spaces. Furthermore, our experiments also suggest that this global convergence is universal for more advanced zero-sum games than the simplest game. This study provides a novel characterization of the global behavior of learning in games through a couple of indicators.

This paper proposes a new framework of algorithmic recourse (AR) that works even in the presence of missing values. AR aims to provide a recourse action for altering the undesired prediction result given by a classifier. Existing AR methods assume that we can access complete information on the features of an input instance. However, we often encounter missing values in a given instance (e.g., due to privacy concerns), and previous studies have not discussed such a practical situation. In this paper, we first empirically and theoretically show the risk that a naive approach with a single imputation technique fails to obtain good actions regarding their validity, cost, and features to be changed. To alleviate this risk, we formulate the task of obtaining a valid and low-cost action for a given incomplete instance by incorporating the idea of multiple imputation. Then, we provide some theoretical analyses of our task and propose a practical solution based on mixed-integer linear optimization. Experimental results demonstrated the efficacy of our method in the presence of missing values compared to the baselines.

This work addresses the problem of planting and defending cryptographic-based backdoors in artificial intelligence (AI) models. The motivation comes from our lack of understanding and the implications of using cryptographic techniques for planting undetectable backdoors under theoretical assumptions in the large AI model systems deployed in practice. Our approach is based on designing a web-based simulation playground that enables planting, activating, and defending cryptographic backdoors in neural networks (NN). Simulations of planting and activating backdoors are enabled for two scenarios: in the extension of NN model architecture to support digital signature verification and in the modified architectural block for non-linear operators. Simulations of backdoor defense against backdoors are available based on proximity analysis and provide a playground for a game of planting and defending against backdoors. The simulations are available at //pages.nist.gov/nn-calculator

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司