Two-phase designs measure variables of interest on a subcohort where the outcome and covariates are readily available or cheap to collect on all individuals in the cohort. Given limited resource availability, it is of interest to find an optimal design that includes more informative individuals in the final sample. We explore the optimal designs and efficiencies for analysis by design-based estimators. Generalized raking is an efficient design-based estimator that improves on the inverse-probability weighted (IPW) estimator by adjusting weights based on the auxiliary information. We derive a closed-form solution of the optimal design for estimating regression coefficients from generalized raking estimators. We compare it with the optimal design for analysis via the IPW estimator and other two-phase designs in measurement-error settings. We consider general two-phase designs where the outcome variable and variables of interest can be continuous or discrete. Our results show that the optimal designs for analysis by the two design-based estimators can be very different. The optimal design for IPW estimation is optimal for analysis via the IPW estimator and typically gives near-optimal efficiency for generalized raking, though we show there is potential improvement in some settings.
The Chebyshev or $\ell_{\infty}$ estimator is an unconventional alternative to the ordinary least squares in solving linear regressions. It is defined as the minimizer of the $\ell_{\infty}$ objective function \begin{align*} \hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \|\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta}\|_{\infty}. \end{align*} The asymptotic distribution of the Chebyshev estimator under fixed number of covariates were recently studied (Knight, 2020), yet finite sample guarantees and generalizations to high-dimensional settings remain open. In this paper, we develop non-asymptotic upper bounds on the estimation error $\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^*\|_2$ for a Chebyshev estimator $\hat{\boldsymbol{\beta}}$, in a regression setting with uniformly distributed noise $\varepsilon_i\sim U([-a,a])$ where $a$ is either known or unknown. With relatively mild assumptions on the (random) design matrix $\mathbf{X}$, we can bound the error rate by $\frac{C_p}{n}$ with high probability, for some constant $C_p$ depending on the dimension $p$ and the law of the design. Furthermore, we illustrate that there exist designs for which the Chebyshev estimator is (nearly) minimax optimal. In addition we show that "Chebyshev's LASSO" has advantages over the regular LASSO in high dimensional situations, provided that the noise is uniform. Specifically, we argue that it achieves a much faster rate of estimation under certain assumptions on the growth rate of the sparsity level and the ambient dimension with respect to the sample size.
In this paper we consider the linear regression model $Y =S X+\varepsilon $ with functional regressors and responses. We develop new inference tools to quantify deviations of the true slope $S$ from a hypothesized operator $S_0$ with respect to the Hilbert--Schmidt norm $\| S- S_0\|^2$, as well as the prediction error $\mathbb{E} \| S X - S_0 X \|^2$. Our analysis is applicable to functional time series and based on asymptotically pivotal statistics. This makes it particularly user friendly, because it avoids the choice of tuning parameters inherent in long-run variance estimation or bootstrap of dependent data. We also discuss two sample problems as well as change point detection. Finite sample properties are investigated by means of a simulation study.\\ Mathematically our approach is based on a sequential version of the popular spectral cut-off estimator $\hat S_N$ for $S$. It is well-known that the $L^2$-minimax rates in the functional regression model, both in estimation and prediction, are substantially slower than $1/\sqrt{N}$ (where $N$ denotes the sample size) and that standard estimators for $S$ do not converge weakly to non-degenerate limits. However, we demonstrate that simple plug-in estimators - such as $\| \hat S_N - S_0 \|^2$ for $\| S - S_0 \|^2$ - are $\sqrt{N}$-consistent and its sequential versions satisfy weak invariance principles. These results are based on the smoothing effect of $L^2$-norms and established by a new proof-technique, the {\it smoothness shift}, which has potential applications in other statistical inverse problems.
We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.
The paper describes a new class of capture-recapture models for closed populations when individual covariates are available. The novelty consists in combining a latent class model for capture probabilities where the class weights and the conditional distributions given the latent may depend on covariates, with a model for the marginal distribution of the available covariates as in Liu et al, Biometrika (2017). In addition, the conditional distributions given the latent and covariates are allowed to take into account any general form of serial dependence. A Fisher scoring algorithm for maximum likelihood estimation is presented, and a powerful result based on the implicit function theorem is used to show that the marginal distribution of observed covariates is uniquely determined, once an estimate of the probabilities of being never captured is available. Asymptotic results are outlined, and a procedure for constructing likelihood based confidence intervals for the population total is presented. Two examples with real data are used to illustrate the proposed approach
We propose straightforward nonparametric estimators for the mean and the covariance functions of functional data. Our setup covers a wide range of practical situations. The random trajectories are, not necessarily differentiable, have unknown regularity, and are measured with error at discrete design points. The measurement error could be heteroscedastic. The design points could be either randomly drawn or common for all curves. The definition of our nonparametric estimators depends on the local regularity of the stochastic process generating the functional data. We first propose a simple estimator of this local regularity which takes strength from the replication and regularization features of functional data. Next, we use the "smoothing first, then estimate" approach for the mean and the covariance functions. The new nonparametric estimators achieve optimal rates of convergence. They can be applied with both sparsely or densely sampled curves, are easy to calculate and to update, and perform well in simulations. Simulations built upon a real data example on household power consumption illustrate the effectiveness of the new approach.
Consider a planner who has to decide whether or not to introduce a new policy to a certain local population. The planner has only limited knowledge of the policy's causal impact on this population due to a lack of data but does have access to the publicized results of intervention studies performed for similar policies on different populations. How should the planner make use of and aggregate this existing evidence to make her policy decision? Building upon the paradigm of `patient-centered meta-analysis' proposed by Manski (2020; Towards Credible Patient-Centered Meta-Analysis, Epidemiology), we formulate the planner's problem as a statistical decision problem with a social welfare objective pertaining to the local population, and solve for an optimal aggregation rule under the minimax-regret criterion. We investigate the analytical properties, computational feasibility, and welfare regret performance of this rule. We also compare the minimax regret decision rule with plug-in decision rules based upon a hierarchical Bayes meta-regression or stylized mean-squared-error optimal prediction. We apply the minimax regret decision rule to two settings: whether to enact an active labor market policy given evidence from 14 randomized control trial studies; and whether to approve a drug (Remdesivir) for COVID-19 treatment using a meta-database of clinical trials.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
This paper addresses the problem of viewpoint estimation of an object in a given image. It presents five key insights that should be taken into consideration when designing a CNN that solves the problem. Based on these insights, the paper proposes a network in which (i) The architecture jointly solves detection, classification, and viewpoint estimation. (ii) New types of data are added and trained on. (iii) A novel loss function, which takes into account both the geometry of the problem and the new types of data, is propose. Our network improves the state-of-the-art results for this problem by 9.8%.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.