To accurately analyze structures, soil-structure interaction effects must be taken into account. One approach is to create a complete finite element model of the full system wherein the soil is represented as a semi-infinite domain. This direct method is frequently adopted in research studies, but it is typically avoided in engineering practice due to the labor-intensive model development, and the high computational cost. In practice, soil-structure interaction analysis is mostly carried out through a substructure approach where the superstructure is modeled through a detailed model and is placed on a soil-foundation substructure which is represented by a system called impedance function. Then, the entire system is analyzed under foundation input motions. While the method is theoretically designed for linear-elastic behavior, it can be partially applied to nonlinear systems too. Although impedance functions for various soil and foundation configurations can be obtained from analytical, numerical, or experimental analyses, their implementation in the time-domain is not trivial because they are frequency-dependent. A simple solution for this problem has been to convert them to some physical models with frequency-independent components, but there is no straightforward way to connect these components. More importantly, the coefficients of these components could be non-physical parameters that cannot be modeled in software like OpenSEES. To resolve these problems, various alternative approaches have been proposed in the literature. In this project, we review some of the existing solutions and verify them through numerical examples. After extensive review and evaluation, the Hybrid Time Frequency Domain method seems a more practical solution with fewer stability issues. This method is implemented in Opensees to be used by researchers and practitioners.
Object detection and multiple object tracking (MOT) are essential components of self-driving systems. Accurate detection and uncertainty quantification are both critical for onboard modules, such as perception, prediction, and planning, to improve the safety and robustness of autonomous vehicles. Collaborative object detection (COD) has been proposed to improve detection accuracy and reduce uncertainty by leveraging the viewpoints of multiple agents. However, little attention has been paid to how to leverage the uncertainty quantification from COD to enhance MOT performance. In this paper, as the first attempt to address this challenge, we design an uncertainty propagation framework called MOT-CUP. Our framework first quantifies the uncertainty of COD through direct modeling and conformal prediction, and propagates this uncertainty information into the motion prediction and association steps. MOT-CUP is designed to work with different collaborative object detectors and baseline MOT algorithms. We evaluate MOT-CUP on V2X-Sim, a comprehensive collaborative perception dataset, and demonstrate a 2% improvement in accuracy and a 2.67X reduction in uncertainty compared to the baselines, e.g. SORT and ByteTrack. In scenarios characterized by high occlusion levels, our MOT-CUP demonstrates a noteworthy $4.01\%$ improvement in accuracy. MOT-CUP demonstrates the importance of uncertainty quantification in both COD and MOT, and provides the first attempt to improve the accuracy and reduce the uncertainty in MOT based on COD through uncertainty propagation. Our code is public on //coperception.github.io/MOT-CUP/.
Federated learning (FL) is a novel approach to machine learning that allows multiple edge devices to collaboratively train a model without disclosing their raw data. However, several challenges hinder the practical implementation of this approach, especially when devices and the server communicate over wireless channels, as it suffers from communication and computation bottlenecks in this case. By utilizing a communication-efficient framework, we propose a novel zero-order (ZO) method with a one-point gradient estimator that harnesses the nature of the wireless communication channel without requiring the knowledge of the channel state coefficient. It is the first method that includes the wireless channel in the learning algorithm itself instead of wasting resources to analyze it and remove its impact. The two main difficulties of this work are that in FL, the objective function is usually not convex, which makes the extension of FL to ZO methods challenging, and that including the impact of wireless channels requires extra attention. However, we overcome these difficulties and comprehensively analyze the proposed zero-order federated learning (ZOFL) framework. We establish its convergence theoretically, and we prove a convergence rate of $O(\frac{1}{\sqrt[3]{K}})$ in the nonconvex setting. We further demonstrate the potential of our algorithm with experimental results, taking into account independent and identically distributed (IID) and non-IID device data distributions.
Training machine learning and statistical models often involves optimizing a data-driven risk criterion. The risk is usually computed with respect to the empirical data distribution, but this may result in poor and unstable out-of-sample performance due to distributional uncertainty. In the spirit of distributionally robust optimization, we propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet Process) theory and recent decision-theoretic models of smooth ambiguity-averse preferences. First, we highlight novel connections with standard regularized empirical risk minimization techniques, among which Ridge and LASSO regressions. Then, we theoretically demonstrate the existence of favorable finite-sample and asymptotic statistical guarantees on the performance of the robust optimization procedure. For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet Process representations. We also show that the smoothness of the criterion naturally leads to standard gradient-based numerical optimization. Finally, we provide insights into the workings of our method by applying it to high-dimensional sparse linear regression and robust location parameter estimation tasks.
Algorithmic paradigms such as divide-and-conquer (D&C) are proposed to guide developers in designing efficient algorithms, but it can still be difficult to apply algorithmic paradigms to practical tasks. To ease the usage of paradigms, many research efforts have been devoted to the automatic application of algorithmic paradigms. However, most existing approaches to this problem rely on syntax-based program transformations and thus put significant restrictions on the original program. In this paper, we study the automatic application of D&C and several similar paradigms, denoted as D&C-like algorithmic paradigms, and aim to remove the restrictions from syntax-based transformations. To achieve this goal, we propose an efficient synthesizer, named AutoLifter, which does not depend on syntax-based transformations. Specifically, the main challenge of applying algorithmic paradigms is from the large scale of the synthesized programs, and AutoLifter addresses this challenge by applying two novel decomposition methods that do not depend on the syntax of the input program, component elimination and variable elimination, to soundly divide the whole problem into simpler subtasks, each synthesizing a sub-program of the final program and being tractable with existing synthesizers. We evaluate AutoLifter on 96 programming tasks related to 6 different algorithmic paradigms. AutoLifter solves 82/96 tasks with an average time cost of 20.17 seconds, significantly outperforming existing approaches.
Hands are the main medium when people interact with the world. Generating proper 3D motion for hand-object interaction is vital for applications such as virtual reality and robotics. Although grasp tracking or object manipulation synthesis can produce coarse hand motion, this kind of motion is inevitably noisy and full of jitter. To address this problem, we propose a data-driven method for coarse motion refinement. First, we design a hand-centric representation to describe the dynamic spatial-temporal relation between hands and objects. Compared to the object-centric representation, our hand-centric representation is straightforward and does not require an ambiguous projection process that converts object-based prediction into hand motion. Second, to capture the dynamic clues of hand-object interaction, we propose a new architecture that models the spatial and temporal structure in a hierarchical manner. Extensive experiments demonstrate that our method outperforms previous methods by a noticeable margin.
Previous theoretical results pertaining to meta-learning on sequences build on contrived assumptions and are somewhat convoluted. We introduce new information-theoretic tools that lead to an elegant and very general decomposition of error into three components: irreducible error, meta-learning error, and intra-task error. These tools unify analyses across many meta-learning challenges. To illustrate, we apply them to establish new results about in-context learning with transformers. Our theoretical results characterizes how error decays in both the number of training sequences and sequence lengths. Our results are very general; for example, they avoid contrived mixing time assumptions made by all prior results that establish decay of error with sequence length.
Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment -- a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. In 2022, Jeong, Tian, and Bareinboim presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the causal graph. In our work, we give the first linear-time, i.e., $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an $O(n(n+m))$ delay enumeration algorithm of all front-door adjustment sets, again improving previous work by a factor of $n^3$. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.