亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Surgical phase recognition is a challenging and necessary task for the development of context-aware intelligent systems that can support medical personnel for better patient care and effective operating room management. In this paper, we present a surgical phase recognition framework that employs a Multi-Stage Temporal Convolution Network using speech and X-Ray images for the first time. We evaluate our proposed approach using our dataset that comprises 31 port-catheter placement operations and report 82.56 \% frame-wise accuracy with eight surgical phases. Additionally, we investigate the design choices in the temporal model and solutions for the class-imbalance problem. Our experiments demonstrate that speech and X-Ray data can be effectively utilized for surgical phase recognition, providing a foundation for the development of speech assistants in operating rooms of the future.

相關內容

Large language models (LLMs) have achieved remarkable success in the field of natural language processing, enabling better human-computer interaction using natural language. However, the seamless integration of speech signals into LLMs has not been explored well. The "decoder-only" architecture has also not been well studied for speech processing tasks. In this research, we introduce Speech-LLaMA, a novel approach that effectively incorporates acoustic information into text-based large language models. Our method leverages Connectionist Temporal Classification and a simple audio encoder to map the compressed acoustic features to the continuous semantic space of the LLM. In addition, we further probe the decoder-only architecture for speech-to-text tasks by training a smaller scale randomly initialized speech-LLaMA model from speech-text paired data alone. We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines, highlighting the potential advantages of decoder-only models for speech-to-text conversion.

The objective of clusterability evaluation is to check whether a clustering structure exists within the data set. As a crucial yet often-overlooked issue in cluster analysis, it is essential to conduct such a test before applying any clustering algorithm. If a data set is unclusterable, any subsequent clustering analysis would not yield valid results. Despite its importance, the majority of existing studies focus on numerical data, leaving the clusterability evaluation issue for categorical data as an open problem. Here we present TestCat, a testing-based approach to assess the clusterability of categorical data in terms of an analytical $p$-value. The key idea underlying TestCat is that clusterable categorical data possess many strongly correlated attribute pairs and hence the sum of chi-squared statistics of all attribute pairs is employed as the test statistic for $p$-value calculation. We apply our method to a set of benchmark categorical data sets, showing that TestCat outperforms those solutions based on existing clusterability evaluation methods for numeric data. To the best of our knowledge, our work provides the first way to effectively recognize the clusterability of categorical data in a statistically sound manner.

The integrated development of city clusters has given rise to an increasing demand for intercity travel. Intercity ride-pooling service exhibits considerable potential in upgrading traditional intercity bus services by implementing demand-responsive enhancements. Nevertheless, its online operations suffer the inherent complexities due to the coupling of vehicle resource allocation among cities and pooled-ride vehicle routing. To tackle these challenges, this study proposes a two-level framework designed to facilitate online fleet management. Specifically, a novel multi-agent feudal reinforcement learning model is proposed at the upper level of the framework to cooperatively assign idle vehicles to different intercity lines, while the lower level updates the routes of vehicles using an adaptive large neighborhood search heuristic. Numerical studies based on the realistic dataset of Xiamen and its surrounding cities in China show that the proposed framework effectively mitigates the supply and demand imbalances, and achieves significant improvement in both the average daily system profit and order fulfillment ratio.

Real-time music information retrieval (RT-MIR) has much potential to augment the capabilities of traditional acoustic instruments. We develop RT-MIR techniques aimed at augmenting percussive fingerstyle, which blends acoustic guitar playing with guitar body percussion. We formulate several design objectives for RT-MIR systems for augmented instrument performance: (i) causal constraint, (ii) perceptually negligible action-to-sound latency, (iii) control intimacy support, (iv) synthesis control support. We present and evaluate real-time guitar body percussion recognition and embedding learning techniques based on convolutional neural networks (CNNs) and CNNs jointly trained with variational autoencoders (VAEs). We introduce a taxonomy of guitar body percussion based on hand part and location. We follow a cross-dataset evaluation approach by collecting three datasets labelled according to the taxonomy. The embedding quality of the models is assessed using KL-Divergence across distributions corresponding to different taxonomic classes. Results indicate that the networks are strong classifiers especially in a simplified 2-class recognition task, and the VAEs yield improved class separation compared to CNNs as evidenced by increased KL-Divergence across distributions. We argue that the VAE embedding quality could support control intimacy and rich interaction when the latent space's parameters are used to control an external synthesis engine. Further design challenges around generalisation to different datasets have been identified.

Deception detection is an interdisciplinary field attracting researchers from psychology, criminology, computer science, and economics. We propose a multimodal approach combining deep learning and discriminative models for automated deception detection. Using video modalities, we employ convolutional end-to-end learning to analyze gaze, head pose, and facial expressions, achieving promising results compared to state-of-the-art methods. Due to limited training data, we also utilize discriminative models for deception detection. Although sequence-to-class approaches are explored, discriminative models outperform them due to data scarcity. Our approach is evaluated on five datasets, including a new Rolling-Dice Experiment motivated by economic factors. Results indicate that facial expressions outperform gaze and head pose, and combining modalities with feature selection enhances detection performance. Differences in expressed features across datasets emphasize the importance of scenario-specific training data and the influence of context on deceptive behavior. Cross-dataset experiments reinforce these findings. Despite the challenges posed by low-stake datasets, including the Rolling-Dice Experiment, deception detection performance exceeds chance levels. Our proposed multimodal approach and comprehensive evaluation shed light on the potential of automating deception detection from video modalities, opening avenues for future research.

Lung cancer is the leading cause of cancer death and early diagnosis is associated with a positive prognosis. Chest X-ray (CXR) provides an inexpensive imaging mode for lung cancer diagnosis. Suspicious nodules are difficult to distinguish from vascular and bone structures using CXR. Computer vision has previously been proposed to assist human radiologists in this task, however, leading studies use down-sampled images and computationally expensive methods with unproven generalization. Instead, this study localizes lung nodules using efficient encoder-decoder neural networks that process full resolution images to avoid any signal loss resulting from down-sampling. Encoder-decoder networks are trained and tested using the JSRT lung nodule dataset. The networks are used to localize lung nodules from an independent external CXR dataset. Sensitivity and false positive rates are measured using an automated framework to eliminate any observer subjectivity. These experiments allow for the determination of the optimal network depth, image resolution and pre-processing pipeline for generalized lung nodule localization. We find that nodule localization is influenced by subtlety, with more subtle nodules being detected in earlier training epochs. Therefore, we propose a novel self-ensemble model from three consecutive epochs centered on the validation optimum. This ensemble achieved a sensitivity of 85% in 10-fold internal testing with false positives of 8 per image. A sensitivity of 81% is achieved at a false positive rate of 6 following morphological false positive reduction. This result is comparable to more computationally complex systems based on linear and spatial filtering, but with a sub-second inference time that is faster than other methods. The proposed algorithm achieved excellent generalization results against an external dataset with sensitivity of 77% at a false positive rate of 7.6.

Accurately recovering the dense 3D mesh of both hands from monocular images poses considerable challenges due to occlusions and projection ambiguity. Most of the existing methods extract features from color images to estimate the root-aligned hand meshes, which neglect the crucial depth and scale information in the real world. Given the noisy sensor measurements with limited resolution, depth-based methods predict 3D keypoints rather than a dense mesh. These limitations motivate us to take advantage of these two complementary inputs to acquire dense hand meshes on a real-world scale. In this work, we propose an end-to-end framework for recovering dense meshes for both hands, which employ single-view RGB-D image pairs as input. The primary challenge lies in effectively utilizing two different input modalities to mitigate the blurring effects in RGB images and noises in depth images. Instead of directly treating depth maps as additional channels for RGB images, we encode the depth information into the unordered point cloud to preserve more geometric details. Specifically, our framework employs ResNet50 and PointNet++ to derive features from RGB and point cloud, respectively. Additionally, we introduce a novel pyramid deep fusion network (PDFNet) to aggregate features at different scales, which demonstrates superior efficacy compared to previous fusion strategies. Furthermore, we employ a GCN-based decoder to process the fused features and recover the corresponding 3D pose and dense mesh. Through comprehensive ablation experiments, we have not only demonstrated the effectiveness of our proposed fusion algorithm but also outperformed the state-of-the-art approaches on publicly available datasets. To reproduce the results, we will make our source code and models publicly available at {\url{//github.com/zijinxuxu/PDFNet}}.

Human Activity Recognition (HAR), based on machine and deep learning algorithms is considered one of the most promising technologies to monitor professional and daily life activities for different categories of people (e.g., athletes, elderly, kids, employers) in order to provide a variety of services related, for example to well-being, empowering of technical performances, prevention of risky situation, and educational purposes. However, the analysis of the effectiveness and the efficiency of HAR methodologies suffers from the lack of a standard workflow, which might represent the baseline for the estimation of the quality of the developed pattern recognition models. This makes the comparison among different approaches a challenging task. In addition, researchers can make mistakes that, when not detected, definitely affect the achieved results. To mitigate such issues, this paper proposes an open-source automatic and highly configurable framework, named B-HAR, for the definition, standardization, and development of a baseline framework in order to evaluate and compare HAR methodologies. It implements the most popular data processing methods for data preparation and the most commonly used machine and deep learning pattern recognition models.

We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes'', the sample is from a certain class, and ``no'' otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at //github.com/yue-zhongqi/gcm-cf.

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.

北京阿比特科技有限公司