We investigate online convex optimization in non-stationary environments and choose the dynamic regret as the performance measure, defined as the difference between cumulative loss incurred by the online algorithm and that of any feasible comparator sequence. Let $T$ be the time horizon and $P_T$ be the path length that essentially reflects the non-stationarity of environments, the state-of-the-art dynamic regret is $\mathcal{O}(\sqrt{T(1+P_T)})$. Although this bound is proved to be minimax optimal for convex functions, in this paper, we demonstrate that it is possible to further enhance the guarantee for some easy problem instances, particularly when online functions are smooth. Specifically, we introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities: the variation in gradients of loss functions, the cumulative loss of the comparator sequence, and the minimum of these two terms. These quantities are at most $\mathcal{O}(T)$ while could be much smaller in benign environments. Therefore, our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and meanwhile guarantee the same rate in the worst case. Notably, our proposed algorithms can achieve favorable dynamic regret with only one gradient per iteration, sharing the same gradient query complexity as the static regret minimization methods. To accomplish this, we introduce the framework of collaborative online ensemble. The proposed framework employs a two-layer online ensemble to handle non-stationarity, and uses optimistic online learning and further introduces crucial correction terms to facilitate effective collaboration within the meta-base two layers, thereby attaining adaptivity. We believe that the framework can be useful for broader problems.
Learning to control unknown nonlinear dynamical systems is a fundamental problem in reinforcement learning and control theory. A commonly applied approach is to first explore the environment (exploration), learn an accurate model of it (system identification), and then compute an optimal controller with the minimum cost on this estimated system (policy optimization). While existing work has shown that it is possible to learn a uniformly good model of the system~\citep{mania2020active}, in practice, if we aim to learn a good controller with a low cost on the actual system, certain system parameters may be significantly more critical than others, and we therefore ought to focus our exploration on learning such parameters. In this work, we consider the setting of nonlinear dynamical systems and seek to formally quantify, in such settings, (a) which parameters are most relevant to learning a good controller, and (b) how we can best explore so as to minimize uncertainty in such parameters. Inspired by recent work in linear systems~\citep{wagenmaker2021task}, we show that minimizing the controller loss in nonlinear systems translates to estimating the system parameters in a particular, task-dependent metric. Motivated by this, we develop an algorithm able to efficiently explore the system to reduce uncertainty in this metric, and prove a lower bound showing that our approach learns a controller at a near-instance-optimal rate. Our algorithm relies on a general reduction from policy optimization to optimal experiment design in arbitrary systems, and may be of independent interest. We conclude with experiments demonstrating the effectiveness of our method in realistic nonlinear robotic systems.
We study limit theorems for entropic optimal transport (EOT) maps, dual potentials, and the Sinkhorn divergence. The key technical tool we use is a first and second-order Hadamard differentiability analysis of EOT potentials with respect to the marginal distributions, which may be of independent interest. Given the differentiability results, the functional delta method is used to obtain central limit theorems for empirical EOT potentials and maps. The second-order functional delta method is leveraged to establish the limit distribution of the empirical Sinkhorn divergence under the null. Building on the latter result, we further derive the null limit distribution of the Sinkhorn independence test statistic and characterize the correct order. Since our limit theorems follow from Hadamard differentiability of the relevant maps, as a byproduct, we also obtain bootstrap consistency and asymptotic efficiency of the empirical EOT map, potentials, and Sinkhorn divergence.
The Rank Decoding problem (RD) is at the core of rank-based cryptography. This problem can also be seen as a structured version of MinRank, which is ubiquitous in multivariate cryptography. Recently, \cite{BBBGNRT20,BBCGPSTV20} proposed attacks based on two new algebraic modelings, namely the MaxMinors modeling which is specific to RD and the Support-Minors modeling which applies to MinRank in general. Both improved significantly the complexity of algebraic attacks on these two problems. In the case of RD and contrarily to what was believed up to now, these new attacks were shown to be able to outperform combinatorial attacks and this even for very small field sizes. However, we prove here that the analysis performed in \cite{BBCGPSTV20} for one of these attacks which consists in mixing the MaxMinors modeling with the Support-Minors modeling to solve RD is too optimistic and leads to underestimate the overall complexity. This is done by exhibiting linear dependencies between these equations and by considering an $\fqm$ version of these modelings which turns out to be instrumental for getting a better understanding of both systems. Moreover, by working over $\Fqm$ rather than over $\ff{q}$, we are able to drastically reduce the number of variables in the system and we (i) still keep enough algebraic equations to be able to solve the system, (ii) are able to analyze rigorously the complexity of our approach. This new approach may improve the older MaxMinors approach on RD from \cite{BBBGNRT20,BBCGPSTV20} for certain parameters. We also introduce a new hybrid approach on the Support-Minors system whose impact is much more general since it applies to any MinRank problem. This technique improves significantly the complexity of the Support-Minors approach for small to moderate field sizes.
Graph theory is an interdisciplinary field of study that has various applications in mathematical modeling and computer science. Research in graph theory depends on the creation of not only theorems but also conjectures. Conjecture-refuting algorithms attempt to refute conjectures by searching for counterexamples to those conjectures, often by maximizing certain score functions on graphs. This study proposes a novel conjecture-refuting algorithm, referred to as the adaptive Monte Carlo search (AMCS) algorithm, obtained by modifying the Monte Carlo tree search algorithm. Evaluated based on its success in finding counterexamples to several graph theory conjectures, AMCS outperforms existing conjecture-refuting algorithms. The algorithm is further utilized to refute six open conjectures, two of which were chemical graph theory conjectures formulated by Liu et al. in 2021 and four of which were formulated by the AutoGraphiX computer system in 2006. Finally, four of the open conjectures are strongly refuted by generalizing the counterexamples obtained by AMCS to produce a family of counterexamples. It is expected that the algorithm can help researchers test graph-theoretic conjectures more effectively.
We consider policy optimization in contextual bandits, where one is given a fixed dataset of logged interactions. While pessimistic regularizers are typically used to mitigate distribution shift, prior implementations thereof are not computationally efficient. We present the first oracle-efficient algorithm for pessimistic policy optimization: it reduces to supervised learning, leading to broad applicability. We also obtain best-effort statistical guarantees analogous to those for pessimistic approaches in prior work. We instantiate our approach for both discrete and continuous actions. We perform extensive experiments in both settings, showing advantage over unregularized policy optimization across a wide range of configurations.
There is increasing interest in data-driven approaches for recommending optimal treatment strategies in many chronic disease management and critical care applications. Reinforcement learning methods are well-suited to this sequential decision-making problem, but must be trained and evaluated exclusively on retrospective medical record datasets as direct online exploration is unsafe and infeasible. Despite this requirement, the vast majority of treatment optimization studies use off-policy RL methods (e.g., Double Deep Q Networks (DDQN) or its variants) that are known to perform poorly in purely offline settings. Recent advances in offline RL, such as Conservative Q-Learning (CQL), offer a suitable alternative. But there remain challenges in adapting these approaches to real-world applications where suboptimal examples dominate the retrospective dataset and strict safety constraints need to be satisfied. In this work, we introduce a practical and theoretically grounded transition sampling approach to address action imbalance during offline RL training. We perform extensive experiments on two real-world tasks for diabetes and sepsis treatment optimization to compare performance of the proposed approach against prominent off-policy and offline RL baselines (DDQN and CQL). Across a range of principled and clinically relevant metrics, we show that our proposed approach enables substantial improvements in expected health outcomes and in accordance with relevant practice and safety guidelines.
In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.
Deep reinforcement learning algorithms typically act on the same set of actions. However, this is not sufficient for a wide range of real-world applications where different subsets are available at each step. In this thesis, we consider the problem of interval restrictions as they occur in pathfinding with dynamic obstacles. When actions that lead to collisions are avoided, the continuous action space is split into variable parts. Recent research learns with strong assumptions on the number of intervals, is limited to convex subsets, and the available actions are learned from the observations. Therefore, we propose two approaches that are independent of the state of the environment by extending parameterized reinforcement learning and ConstraintNet to handle an arbitrary number of intervals. We demonstrate their performance in an obstacle avoidance task and compare the methods to penalties, projection, replacement, as well as discrete and continuous masking from the literature. The results suggest that discrete masking of action-values is the only effective method when constraints did not emerge during training. When restrictions are learned, the decision between projection, masking, and our ConstraintNet modification seems to depend on the task at hand. We compare the results with varying complexity and give directions for future work.
In this paper, we present a statistical beamforming algorithm as a pre-processing step for robust automatic speech recognition (ASR). By modeling the target speech as a non-stationary Laplacian distribution, a mask-based statistical beamforming algorithm is proposed to exploit both its output and masked input variance for robust estimation of the beamformer. In addition, we also present a method for steering vector estimation (SVE) based on a noise power ratio obtained from the target and noise outputs in independent component analysis (ICA). To update the beamformer in the same ICA framework, we derive ICA with distortionless and null constraints on target speech, which yields beamformed speech at the target output and noises at the other outputs, respectively. The demixing weights for the target output result in a statistical beamformer with the weighted spatial covariance matrix (wSCM) using a weighting function characterized by a source model. To enhance the SVE, the strict null constraints imposed by the Lagrange multiplier methods are relaxed by generalized penalties with weight parameters, while the strict distortionless constraints are maintained. Furthermore, we derive an online algorithm based on an optimization technique of recursive least squares (RLS) for practical applications. Experimental results on various environments using CHiME-4 and LibriCSS datasets demonstrate the effectiveness of the presented algorithm compared to conventional beamforming and blind source extraction (BSE) based on ICA on both batch and online processing.
It is often of interest to assess whether a function-valued statistical parameter, such as a density function or a mean regression function, is equal to any function in a class of candidate null parameters. This can be framed as a statistical inference problem where the target estimand is a scalar measure of dissimilarity between the true function-valued parameter and the closest function among all candidate null values. These estimands are typically defined to be zero when the null holds and positive otherwise. While there is well-established theory and methodology for performing efficient inference when one assumes a parametric model for the function-valued parameter, methods for inference in the nonparametric setting are limited. When the null holds, and the target estimand resides at the boundary of the parameter space, existing nonparametric estimators either achieve a non-standard limiting distribution or a sub-optimal convergence rate, making inference challenging. In this work, we propose a strategy for constructing nonparametric estimators with improved asymptotic performance. Notably, our estimators converge at the parametric rate at the boundary of the parameter space and also achieve a tractable null limiting distribution. As illustrations, we discuss how this framework can be applied to perform inference in nonparametric regression problems, and also to perform nonparametric assessment of stochastic dependence.