The membership and threshold problems for recurrence sequences are fundamental open decision problems in automated verification. The former problem asks whether a chosen target is an element of a sequence, whilst the latter asks whether every term in a sequence is bounded from below by a given value. A rational-valued sequence $\langle u_n \rangle_n$ is hypergeometric if it satisfies a first-order linear recurrence of the form $p(n)u_{n+1} = q(n)u_{n}$ with polynomial coefficients $p,q\in\mathbb{Z}[x]$. In this note we establish decidability results for the aforementioned problems for restricted classes of hypergeometric sequences. For example, we establish decidability for the aforementioned problems under the assumption that the polynomial coefficients $p,q\in\mathbb{Z}[x]$ are monic and split over an imaginary rational extension of $\mathbb{Q}$. We also establish conditional decidability results; that is, conditional on Schanuel's conjecture, when the irreducible factors of the monic polynomial coefficients $p,q\in\mathbb{Z}[x]$ are either linear or quadratic.
The problem of Novel Class Discovery (NCD) consists in extracting knowledge from a labeled set of known classes to accurately partition an unlabeled set of novel classes. While NCD has recently received a lot of attention from the community, it is often solved on computer vision problems and under unrealistic conditions. In particular, the number of novel classes is usually assumed to be known in advance, and their labels are sometimes used to tune hyperparameters. Methods that rely on these assumptions are not applicable in real-world scenarios. In this work, we focus on solving NCD in tabular data when no prior knowledge of the novel classes is available. To this end, we propose to tune the hyperparameters of NCD methods by adapting the $k$-fold cross-validation process and hiding some of the known classes in each fold. Since we have found that methods with too many hyperparameters are likely to overfit these hidden classes, we define a simple deep NCD model. This method is composed of only the essential elements necessary for the NCD problem and performs impressively well under realistic conditions. Furthermore, we find that the latent space of this method can be used to reliably estimate the number of novel classes. Additionally, we adapt two unsupervised clustering algorithms ($k$-means and Spectral Clustering) to leverage the knowledge of the known classes. Extensive experiments are conducted on 7 tabular datasets and demonstrate the effectiveness of the proposed method and hyperparameter tuning process, and show that the NCD problem can be solved without relying on knowledge from the novel classes.
Integrating different functionalities, conventionally implemented as dedicated systems, into a single platform allows utilising the available resources more efficiently. We consider an integrated sensing and power transfer (ISAPT) system and propose the joint optimisation of the rectangular pulse-shaped transmit signal and the beamforming design to combine sensing and wireless power transfer (WPT) functionalities efficiently. In contrast to prior works, we adopt an accurate non-linear circuit-based energy harvesting (EH) model. We formulate a non-convex optimisation problem for a general number of EH receivers and a single sensing target (ST) and solve the problem via a grid search over the pulse duration, semidefinite relaxation (SDR), and successive convex approximation (SCA). The average harvested power is shown to monotonically increase with the pulse duration when the average transmit power budget is large. We discuss the trade-off between sensing performance and power transfer of the ISAPT system. The proposed approach significantly outperforms a heuristic baseline scheme based on a linear EH model, which linearly combines energy beamforming with the beamsteering vector in the direction to the ST as its transmit strategy.
We propose a new approach to formally describing the requirement for statistical inference and checking whether a program uses the statistical method appropriately. Specifically, we define belief Hoare logic (BHL) for formalizing and reasoning about the statistical beliefs acquired via hypothesis testing. This program logic is sound and relatively complete with respect to a Kripke model for hypothesis tests. We demonstrate by examples that BHL is useful for reasoning about practical issues in hypothesis testing. In our framework, we clarify the importance of prior beliefs in acquiring statistical beliefs through hypothesis testing, and discuss the whole picture of the justification of statistical inference inside and outside the program logic.
Many constraint satisfaction and optimisation problems can be solved effectively by encoding them as instances of the Boolean Satisfiability problem (SAT). However, even the simplest types of constraints have many encodings in the literature with widely varying performance, and the problem of selecting suitable encodings for a given problem instance is not trivial. We explore the problem of selecting encodings for pseudo-Boolean and linear constraints using a supervised machine learning approach. We show that it is possible to select encodings effectively using a standard set of features for constraint problems; however we obtain better performance with a new set of features specifically designed for the pseudo-Boolean and linear constraints. In fact, we achieve good results when selecting encodings for unseen problem classes. Our results compare favourably to AutoFolio when using the same feature set. We discuss the relative importance of instance features to the task of selecting the best encodings, and compare several variations of the machine learning method.
Existing score-distilling text-to-3D generation techniques, despite their considerable promise, often encounter the view inconsistency problem. One of the most notable issues is the Janus problem, where the most canonical view of an object (\textit{e.g}., face or head) appears in other views. In this work, we explore existing frameworks for score-distilling text-to-3D generation and identify the main causes of the view inconsistency problem -- the embedded bias of 2D diffusion models. Based on these findings, we propose two approaches to debias the score-distillation frameworks for view-consistent text-to-3D generation. Our first approach, called score debiasing, involves cutting off the score estimated by 2D diffusion models and gradually increasing the truncation value throughout the optimization process. Our second approach, called prompt debiasing, identifies conflicting words between user prompts and view prompts using a language model, and adjusts the discrepancy between view prompts and the viewing direction of an object. Our experimental results show that our methods improve the realism of the generated 3D objects by significantly reducing artifacts and achieve a good trade-off between faithfulness to the 2D diffusion models and 3D consistency with little overhead. Our project page is available at~\url{//susunghong.github.io/Debiased-Score-Distillation-Sampling/}.
Many important science and engineering problems can be converted into NP-complete problems which are of significant importance in computer science and mathematics. Currently, neither existing classical nor quantum algorithms can solve these problems in polynomial time. To address this difficulty, this paper proposes a quantum feasibility labeling (QFL) algorithm to label all possible solutions to the vertex coloring problem, which is a well-known NP-complete problem. The QFL algorithm converts the vertex coloring problem into the problem of searching an unstructured database where good and bad elements are labeled. The recently proposed variational quantum search (VQS) algorithm was demonstrated to achieve an exponential speedup, in circuit depth, up to 26 qubits in finding good element(s) from an unstructured database. Using the labels and the associated possible solutions as input, the VQS can find all feasible solutions to the vertex coloring problem. The number of qubits and the circuit depth required by the QFL each is a polynomial function of the number of vertices, the number of edges, and the number of colors of a vertex coloring problem. We have implemented the QFL on an IBM Qiskit simulator to solve a 4-colorable 4-vertex 3-edge coloring problem.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.