AI-Generated Content (AIGC), as a novel manner of providing Metaverse services in the forthcoming Internet paradigm, can resolve the obstacles of immersion requirements. Concurrently, edge computing, as an evolutionary paradigm of computing in communication systems, effectively augments real-time interactive services. In pursuit of enhancing the accessibility of AIGC services, the deployment of AIGC models (e.g., diffusion models) to edge servers and local devices has become a prevailing trend. Nevertheless, this approach faces constraints imposed by battery life and computational resources when tasks are offloaded to local devices, limiting the capacity to deliver high-quality content to users while adhering to stringent latency requirements. So there will be a tradeoff between the utility of AIGC models and offloading decisions in the edge computing paradigm. This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage. Moreover, we take the average error into consideration as the metric for evaluating the quality of the generated results. Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.
The latest developments in Natural Language Processing (NLP) have demonstrated remarkable progress in a code-text retrieval problem. As the Transformer-based models used in this task continue to increase in size, the computational costs and time required for end-to- end fine-tuning become substantial. This poses a significant challenge for adapting and utilizing these models when computational resources are limited. Motivated by these concerns, we propose a fine-tuning frame- work that leverages Parameter-Efficient Fine-Tuning (PEFT) techniques. Moreover, we adopt contrastive learning objectives to improve the quality of bimodal representations learned by transformer models. Additionally, for PEFT methods we provide extensive benchmarking, the lack of which has been highlighted as a crucial problem in the literature. Based on the thorough experimentation with the CodeT5+ model conducted on two datasets, we demonstrate that the proposed fine-tuning framework has the potential to improve code-text retrieval performance by tuning only 0.4% parameters at most.
3D semantic scene completion (SSC) is an ill-posed perception task that requires inferring a dense 3D scene from limited observations. Previous camera-based methods struggle to predict accurate semantic scenes due to inherent geometric ambiguity and incomplete observations. In this paper, we resort to stereo matching technique and bird's-eye-view (BEV) representation learning to address such issues in SSC. Complementary to each other, stereo matching mitigates geometric ambiguity with epipolar constraint while BEV representation enhances the hallucination ability for invisible regions with global semantic context. However, due to the inherent representation gap between stereo geometry and BEV features, it is non-trivial to bridge them for dense prediction task of SSC. Therefore, we further develop a unified occupancy-based framework dubbed BRGScene, which effectively bridges these two representations with dense 3D volumes for reliable semantic scene completion. Specifically, we design a novel Mutual Interactive Ensemble (MIE) block for pixel-level reliable aggregation of stereo geometry and BEV features. Within the MIE block, a Bi-directional Reliable Interaction (BRI) module, enhanced with confidence re-weighting, is employed to encourage fine-grained interaction through mutual guidance. Besides, a Dual Volume Ensemble (DVE) module is introduced to facilitate complementary aggregation through channel-wise recalibration and multi-group voting. Our method outperforms all published camera-based methods on SemanticKITTI for semantic scene completion. Our code is available on //github.com/Arlo0o/StereoScene.
This paper addresses a critical flaw in MediaPipe Holistic's hand Region of Interest (ROI) prediction, which struggles with non-ideal hand orientations, affecting sign language recognition accuracy. We propose a data-driven approach to enhance ROI estimation, leveraging an enriched feature set including additional hand keypoints and the z-dimension. Our results demonstrate better estimates, with higher Intersection-over-Union compared to the current method. Our code and optimizations are available at //github.com/sign-language-processing/mediapipe-hand-crop-fix.
6G Open Radio Access Networks (ORAN) promises to open data interfaces to enable plug-and-play service Apps, many of which are consumer and business-facing. Opening up 6G access lowers the barrier to innovation but raises the challenge that the required communication specifications are not fully known to all service designers. As such, business innovators must either be familiar with 6G standards or consult with experts. Enabling consistent, unbiased, rapid, and low-cost requirement assessment and specification generation is crucial to the ORAN innovation ecosystem. Here, we discuss our initiative to bridge service specification generation gaps between network service providers and business innovators. We first review the state-of-the-art and motivation in 6G plug-and-play services and capabilities, potential use cases, and relevant advances in Large Language Models (LLMs). We identify an ample innovation space for hybrid use cases that may require diverse and variational wireless functionalities across its operating time. We show that the network specification can be automated and present the first automatic retrieval-augmented specification generation (RAG) framework for 6G use cases. To enable public acceptance and feedback, a website interface is also published for the research and industrial community to experiment with the RAG framework. We hope this review highlights the need and the emerging foundation models that advance this area and motivate researchers to engage with the framework.
In recent years, the XLogoOnline programming platform has gained popularity among novice learners. It integrates the Logo programming language with visual programming, providing a visual interface for learning computing concepts. However, XLogoOnline offers only a limited set of tasks, which are inadequate for learners to master the computing concepts that require sufficient practice. To address this, we introduce XLogoSyn, a novel technique for synthesizing high-quality tasks for varying difficulty levels. Given a reference task, XLogoSyn can generate practice tasks at varying difficulty levels that cater to the varied needs and abilities of different learners. XLogoSyn achieves this by combining symbolic execution and constraint satisfaction techniques. Our expert study demonstrates the effectiveness of XLogoSyn. We have also deployed synthesized practice tasks into XLogoOnline, highlighting the educational benefits of these synthesized practice tasks.
The rapid advancement in Large Language Models (LLMs) has markedly enhanced the capabilities of language understanding and generation. However, the substantial model size poses hardware challenges, affecting both memory size for serving and inference latency for token generation. To address those challenges, we propose Dependency-aware Semi-structured Sparsity (DaSS), a novel method for the recent prevalent SwiGLU-based LLMs pruning. Our approach incorporates structural dependency into the weight magnitude-based unstructured pruning. We introduce an MLP-specific pruning metric that evaluates the importance of each weight by jointly considering its magnitude and its corresponding MLP intermediate activation norms. DaSS facilitates a balance between the adaptability offered by unstructured pruning and the structural consistency inherent in dependency-based structured pruning. Empirical evaluations on Mistral and LLaMA2 model families demonstrate that DaSS not only outperforms both SparseGPT and Wanda in achieving hardware-friendly N:M sparsity patterns but also maintains the computational efficiency of Wanda.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.