In this paper, we present a comparative study on the robustness of two different online streaming speech recognition models: Monotonic Chunkwise Attention (MoChA) and Recurrent Neural Network-Transducer (RNN-T). We explore three recently proposed data augmentation techniques, namely, multi-conditioned training using an acoustic simulator, Vocal Tract Length Perturbation (VTLP) for speaker variability, and SpecAugment. Experimental results show that unidirectional models are in general more sensitive to noisy examples in the training set. It is observed that the final performance of the model depends on the proportion of training examples processed by data augmentation techniques. MoChA models generally perform better than RNN-T models. However, we observe that training of MoChA models seems to be more sensitive to various factors such as the characteristics of training sets and the incorporation of additional augmentations techniques. On the other hand, RNN-T models perform better than MoChA models in terms of latency, inference time, and the stability of training. Additionally, RNN-T models are generally more robust against noise and reverberation. All these advantages make RNN-T models a better choice for streaming on-device speech recognition compared to MoChA models.
The Mandarin Chinese language is known to be strongly influenced by a rich set of regional accents, while Mandarin speech with each accent is quite low resource. Hence, an important task in Mandarin speech recognition is to appropriately model the acoustic variabilities imposed by accents. In this paper, an investigation of implicit and explicit use of accent information on a range of deep neural network (DNN) based acoustic modelling techniques is conducted. Meanwhile, approaches of multi-accent modelling including multi-style training, multi-accent decision tree state tying, DNN tandem and multi-level adaptive network (MLAN) tandem hidden Markov model (HMM) modelling are combined and compared in this paper. On a low resource accented Mandarin speech recognition task consisting of four regional accents, an improved MLAN tandem HMM systems explicitly leveraging the accent information was proposed and significantly outperformed the baseline accent independent DNN tandem systems by 0.8%-1.5% absolute (6%-9% relative) in character error rate after sequence level discriminative training and adaptation.
This paper investigates the recovery of a spectrally sparse signal from its partially revealed noisy entries within the framework of spectral compressive sensing. Nonconvex optimization approaches have recently been proposed based on low-rank Hankel matrix completion and projected gradient descent (PGD). The PGD however involves unknown tuning parameters and its theoretical analysis is available only in the absence of noise. In this paper, we propose a hyperparameter-free, vanilla gradient descent (VGD) algorithm and prove that the VGD enables robust recovery of an $N$-dimensional $K$-spectrally-sparse signal from order $K^2 log^2N$ number of noisy samples under coherence and other mild conditions. The above sample complexity increases by factor $logN$ as compared with PGD without noise. Numerical simulations are provided that corroborate our analysis and show advantageous performances of VGD.
In this work, we propose a bi-directional long short-term memory (BiLSTM) network based COVID-19 detection method using breath/speech/cough signals. By using the acoustic signals to train the network, respectively, we can build individual models for three tasks, whose parameters are averaged to obtain an average model, which is then used as the initialization for the BiLSTM model training of each task. This initialization method can significantly improve the performance on the three tasks, which surpasses the official baseline results. Besides, we also utilize a public pre-trained model wav2vec2.0 and pre-train it using the official DiCOVA datasets. This wav2vec2.0 model is utilized to extract high-level features of the sound as the model input to replace conventional mel-frequency cepstral coefficients (MFCC) features. Experimental results reveal that using high-level features together with MFCC features can improve the performance. To further improve the performance, we also deploy some preprocessing techniques like silent segment removal, amplitude normalization and time-frequency mask. The proposed detection model is evaluated on the DiCOVA dataset and results show that our method achieves an area under curve (AUC) score of 88.44% on blind test in the fusion track.
Data augmentation is an indispensable technique to improve generalization and also to deal with imbalanced datasets. Recently, AutoAugment has been proposed to automatically search augmentation policies from a dataset and has significantly improved performances on many image recognition tasks. However, its search method requires thousands of GPU hours to train even in a reduced setting. In this paper, we propose Fast AutoAugment algorithm that learns augmentation policies using a more efficient search strategy based on density matching. In comparison to AutoAugment, the proposed algorithm speeds up the search time by orders of magnitude while maintaining the comparable performances on the image recognition tasks with various models and datasets including CIFAR-10, CIFAR-100, and ImageNet.
End-to-end approaches have drawn much attention recently for significantly simplifying the construction of an automatic speech recognition (ASR) system. RNN transducer (RNN-T) is one of the popular end-to-end methods. Previous studies have shown that RNN-T is difficult to train and a very complex training process is needed for a reasonable performance. In this paper, we explore RNN-T for a Chinese large vocabulary continuous speech recognition (LVCSR) task and aim to simplify the training process while maintaining performance. First, a new strategy of learning rate decay is proposed to accelerate the model convergence. Second, we find that adding convolutional layers at the beginning of the network and using ordered data can discard the pre-training process of the encoder without loss of performance. Besides, we design experiments to find a balance among the usage of GPU memory, training circle and model performance. Finally, we achieve 16.9% character error rate (CER) on our test set which is 2% absolute improvement from a strong BLSTM CE system with language model trained on the same text corpus.
We present SpecAugment, a simple data augmentation method for speech recognition. SpecAugment is applied directly to the feature inputs of a neural network (i.e., filter bank coefficients). The augmentation policy consists of warping the features, masking blocks of frequency channels, and masking blocks of time steps. We apply SpecAugment on Listen, Attend and Spell networks for end-to-end speech recognition tasks. We achieve state-of-the-art performance on the LibriSpeech 960h and Swichboard 300h tasks, outperforming all prior work. On LibriSpeech, we achieve 6.8% WER on test-other without the use of a language model, and 5.8% WER with shallow fusion with a language model. This compares to the previous state-of-the-art hybrid system of 7.5% WER. For Switchboard, we achieve 7.2%/14.6% on the Switchboard/CallHome portion of the Hub5'00 test set without the use of a language model, and 6.8%/14.1% with shallow fusion, which compares to the previous state-of-the-art hybrid system at 8.3%/17.3% WER.
Neural waveform models such as the WaveNet are used in many recent text-to-speech systems, but the original WaveNet is quite slow in waveform generation because of its autoregressive (AR) structure. Although faster non-AR models were recently reported, they may be prohibitively complicated due to the use of a distilling training method and the blend of other disparate training criteria. This study proposes a non-AR neural source-filter waveform model that can be directly trained using spectrum-based training criteria and the stochastic gradient descent method. Given the input acoustic features, the proposed model first uses a source module to generate a sine-based excitation signal and then uses a filter module to transform the excitation signal into the output speech waveform. Our experiments demonstrated that the proposed model generated waveforms at least 100 times faster than the AR WaveNet and the quality of its synthetic speech is close to that of speech generated by the AR WaveNet. Ablation test results showed that both the sine-wave excitation signal and the spectrum-based training criteria were essential to the performance of the proposed model.
This paper investigates the impact of word-based RNN language models (RNN-LMs) on the performance of end-to-end automatic speech recognition (ASR). In our prior work, we have proposed a multi-level LM, in which character-based and word-based RNN-LMs are combined in hybrid CTC/attention-based ASR. Although this multi-level approach achieves significant error reduction in the Wall Street Journal (WSJ) task, two different LMs need to be trained and used for decoding, which increase the computational cost and memory usage. In this paper, we further propose a novel word-based RNN-LM, which allows us to decode with only the word-based LM, where it provides look-ahead word probabilities to predict next characters instead of the character-based LM, leading competitive accuracy with less computation compared to the multi-level LM. We demonstrate the efficacy of the word-based RNN-LMs using a larger corpus, LibriSpeech, in addition to WSJ we used in the prior work. Furthermore, we show that the proposed model achieves 5.1 %WER for WSJ Eval'92 test set when the vocabulary size is increased, which is the best WER reported for end-to-end ASR systems on this benchmark.
Multilingual models for Automatic Speech Recognition (ASR) are attractive as they have been shown to benefit from more training data, and better lend themselves to adaptation to under-resourced languages. However, initialisation from monolingual context-dependent models leads to an explosion of context-dependent states. Connectionist Temporal Classification (CTC) is a potential solution to this as it performs well with monophone labels. We investigate multilingual CTC in the context of adaptation and regularisation techniques that have been shown to be beneficial in more conventional contexts. The multilingual model is trained to model a universal International Phonetic Alphabet (IPA)-based phone set using the CTC loss function. Learning Hidden Unit Contribution (LHUC) is investigated to perform language adaptive training. In addition, dropout during cross-lingual adaptation is also studied and tested in order to mitigate the overfitting problem. Experiments show that the performance of the universal phoneme-based CTC system can be improved by applying LHUC and it is extensible to new phonemes during cross-lingual adaptation. Updating all the parameters shows consistent improvement on limited data. Applying dropout during adaptation can further improve the system and achieve competitive performance with Deep Neural Network / Hidden Markov Model (DNN/HMM) systems on limited data.
Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In our previous work, we have shown that such architectures are comparable to state-of-the-art ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore techniques such as synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12,500 hour voice search task, we find that the proposed changes improve the WER of the LAS system from 9.2% to 5.6%, while the best conventional system achieve 6.7% WER. We also test both models on a dictation dataset, and our model provide 4.1% WER while the conventional system provides 5% WER.