亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the long-run behavior of single-server queues with Hawkes arrivals and general service distributions and related optimization problems. In detail, utilizing novel coupling techniques, we establish finite moment bounds for the stationary distribution of the workload and busy period processes. In addition, we are able to show that, those queueing processes converge exponentially fast to their stationary distribution. Based on these theoretic results, we develop an efficient numerical algorithm to solve the optimal staffing problem for the Hawkes queues in a data-driven manner. Numerical results indicate a sharp difference in staffing for Hawkes queues, compared to the classic GI/GI/1 model, especially in the heavy-traffic regime.

相關內容

Modern consumer electronic devices have started executing deep learning-based intelligence services on devices, not cloud servers, to keep personal data on devices and to reduce network and cloud costs. We find such a trend as the opportunity to personalize intelligence services by updating neural networks with user data without exposing the data out of devices: on-device training. However, the limited resources of devices incurs significant difficulties. We propose a light-weight on-device training framework, NNTrainer, which provides highly memory-efficient neural network training techniques and proactive swapping based on fine-grained execution order analysis for neural networks. Moreover, its optimizations do not sacrifice accuracy and are transparent to training algorithms; thus, prior algorithmic studies may be implemented on top of NNTrainer. The evaluations show that NNTrainer can reduce memory consumption down to 1/20 (saving 95%!) and effectively personalizes intelligence services on devices. NNTrainer is cross-platform and practical open-source software, which is being deployed to millions of mobile devices.

The expansion of the open source community and the rise of large language models have raised ethical and security concerns on the distribution of source code, such as misconduct on copyrighted code, distributions without proper licenses, or misuse of the code for malicious purposes. Hence it is important to track the ownership of source code, in which watermarking is a major technique. Yet, drastically different from natural languages, source code watermarking requires far stricter and more complicated rules to ensure the readability as well as the functionality of the source code. Hence we introduce SrcMarker, a watermarking system to unobtrusively encode ID bitstrings into source code, without affecting the usage and semantics of the code. To this end, SrcMarker performs transformations on an AST-based intermediate representation that enables unified transformations across different programming languages. The core of the system utilizes learning-based embedding and extraction modules to select rule-based transformations for watermarking. In addition, a novel feature-approximation technique is designed to tackle the inherent non-differentiability of rule selection, thus seamlessly integrating the rule-based transformations and learning-based networks into an interconnected system to enable end-to-end training. Extensive experiments demonstrate the superiority of SrcMarker over existing methods in various watermarking requirements.

With the growing use of large language models hosted on cloud platforms to offer inference services, privacy concerns are escalating, especially concerning sensitive data like investment plans and bank account details. Secure Multi-Party Computing (SMPC) emerges as a promising solution to protect the privacy of inference data and model parameters. However, the application of SMPC in Privacy-Preserving Inference (PPI) for large language models, particularly those based on the Transformer architecture, often leads to considerable slowdowns or declines in performance. This is largely due to the multitude of nonlinear operations in the Transformer architecture, which are not well-suited to SMPC and are difficult to circumvent or optimize effectively. To address this concern, we introduce an advanced optimization framework called SecFormer, designed to strike an optimal balance between performance and efficiency in PPI for Transformer models. By implementing knowledge distillation techniques, we successfully eliminate the high-cost exponential and maximum operations in PPI without sacrificing model performance. Additionally, we have developed a suite of efficient SMPC protocols that utilize segmented polynomials and Goldschmidt's method to handle other complex nonlinear functions within PPI, such as GeLU, LayerNorm, and Softmax. Our extensive experiments reveal that SecFormer outperforms MPCFormer in performance, showing improvements of $5.6\%$ and $24.2\%$ for BERT$_{\text{BASE}}$ and BERT$_{\text{LARGE}}$, respectively. In terms of efficiency, SecFormer is 3.4 and 3.2 times faster than Puma, demonstrating its effectiveness and speed.

Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain.

We develop a post-selection inference method for the Cox proportional hazards model with interval-censored data, which provides asymptotically valid p-values and confidence intervals conditional on the model selected by lasso. The method is based on a pivotal quantity that is shown to converge to a uniform distribution under local alternatives. The proof can be adapted to many other regression models, which is illustrated by the extension to generalized linear models and the Cox model with right-censored data. Our method involves estimation of the efficient information matrix, for which several approaches are proposed with proof of their consistency. Thorough simulation studies show that our method has satisfactory performance in samples of modest sizes. The utility of the method is illustrated via an application to an Alzheimer's disease study.

We present a fast, scalable, data-driven approach for solving relaxations of 0-1 integer linear programs. We use a combination of graph neural networks (GNN) and the Lagrange decomposition based algorithm FastDOG (Abbas and Swoboda 2022b). We make the latter differentiable for end-to-end training and use GNNs to predict its algorithmic parameters. This allows to retain the algorithm's theoretical properties including dual feasibility and guaranteed non-decrease in the lower bound while improving it via training. We overcome suboptimal fixed points of the basic solver by additional non-parametric GNN update steps maintaining dual feasibility. For training we use an unsupervised loss. We train on smaller problems and test on larger ones showing strong generalization performance with a GNN comprising only around $10k$ parameters. Our solver achieves significantly faster performance and better dual objectives than its non-learned version, achieving close to optimal objective values of LP relaxations of very large structured prediction problems and on selected combinatorial ones. In particular, we achieve better objective values than specialized approximate solvers for specific problem classes while retaining their efficiency. Our solver has better any-time performance over a large time period compared to a commercial solver. Code available at //github.com/LPMP/BDD

Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

北京阿比特科技有限公司