亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The necessity of radix conversion of numeric data is an indispensable component in any complete analysis of digital computation. In this paper, we propose a binary encoding for mixed-radix digits. Second, a variant of rANS coding based on this conversion is given, which supports parallel decoding. The simulations show that the proposed coding in serial mode has a higher throughput than the baseline (with the speed-up factor about 2X) without loss of compression ratio, and it outperforms the existing 2-way interleaving implementation.

相關內容

Realistic reservoir simulation is known to be prohibitively expensive in terms of computation time when increasing the accuracy of the simulation or by enlarging the model grid size. One method to address this issue is to parallelize the computation by dividing the model in several partitions and using multiple CPUs to compute the result using techniques such as MPI and multi-threading. Alternatively, GPUs are also a good candidate to accelerate the computation due to their massively parallel architecture that allows many floating point operations per second to be performed. The numerical iterative solver takes thus the most computational time and is challenging to solve efficiently due to the dependencies that exist in the model between cells. In this work, we evaluate the OPM Flow simulator and compare several state-of-the-art GPU solver libraries as well as custom developed solutions for a BiCGStab solver using an ILU0 preconditioner and benchmark their performance against the default DUNE library implementation running on multiple CPU processors using MPI. The evaluated GPU software libraries include a manual linear solver in OpenCL and the integration of several third party sparse linear algebra libraries, such as cuSparse, rocSparse, and amgcl. To perform our bench-marking, we use small, medium, and large use cases, starting with the public test case NORNE that includes approximately 50k active cells and ending with a large model that includes approximately 1 million active cells. We find that a GPU can accelerate a single dual-threaded MPI process up to 5.6 times, and that it can compare with around 8 dual-threaded MPI processes.

We propose a method for analyzing the distributed random coordinate descent algorithm for solving separable resource allocation problems in the context of an open multiagent system, where agents can be replaced during the process. In particular, we characterize the evolution of the distance to the minimizer in expectation by following a time-varying optimization approach which builds on two components. First, we establish the linear convergence of the algorithm in closed systems, in terms of the estimate towards the minimizer, for general graphs and appropriate step-size. Second, we estimate the change of the optimal solution after a replacement, in order to evaluate its effect on the distance between the current estimate and the minimizer. From these two elements, we derive stability conditions in open systems and establish the linear convergence of the algorithm towards a steady-state expected error. Our results enable to characterize the trade-off between speed of convergence and robustness to agent replacements, under the assumptions that local functions are smooth, strongly convex, and have their minimizers located in a given ball. The approach proposed in this paper can moreover be extended to other algorithms guaranteeing linear convergence in closed system.

We propose and analyze the application of statistical functional depth metrics for the selection of extreme scenarios in day-ahead grid planning. Our primary motivation is screening of probabilistic scenarios for realized load and renewable generation, in order to identify scenarios most relevant for operational risk mitigation. To handle the high-dimensionality of the scenarios across asset classes and intra-day periods, we employ functional measures of depth to sub-select outlying scenarios that are most likely to be the riskiest for the grid operation. We investigate a range of functional depth measures, as well as a range of operational risks, including load shedding, operational costs, reserves shortfall and variable renewable energy curtailment. The effectiveness of the proposed screening approach is demonstrated through a case study on the realistic Texas-7k grid.

The Gaussian process (GP) is a popular statistical technique for stochastic function approximation and uncertainty quantification from data. GPs have been adopted into the realm of machine learning in the last two decades because of their superior prediction abilities, especially in data-sparse scenarios, and their inherent ability to provide robust uncertainty estimates. Even so, their performance highly depends on intricate customizations of the core methodology, which often leads to dissatisfaction among practitioners when standard setups and off-the-shelf software tools are being deployed. Arguably the most important building block of a GP is the kernel function which assumes the role of a covariance operator. Stationary kernels of the Mat\'ern class are used in the vast majority of applied studies; poor prediction performance and unrealistic uncertainty quantification are often the consequences. Non-stationary kernels show improved performance but are rarely used due to their more complicated functional form and the associated effort and expertise needed to define and tune them optimally. In this perspective, we want to help ML practitioners make sense of some of the most common forms of non-stationarity for Gaussian processes. We show a variety of kernels in action using representative datasets, carefully study their properties, and compare their performances. Based on our findings, we propose a new kernel that combines some of the identified advantages of existing kernels.

Gesture recognition is a pivotal technology in the realm of intelligent education, and millimeter-wave (mmWave) signals possess advantages such as high resolution and strong penetration capability. This paper introduces a highly accurate and robust gesture recognition method using mmWave radar. The method involves capturing the raw signals of hand movements with the mmWave radar module and preprocessing the received radar signals, including Fourier transformation, distance compression, Doppler processing, and noise reduction through moving target indication (MTI). The preprocessed signals are then fed into the Convolutional Neural Network-Time Domain Convolutional Network (CNN-TCN) model to extract spatio-temporal features, with recognition performance evaluated through classification. Experimental results demonstrate that this method achieves an accuracy rate of 98.2% in domain-specific recognition and maintains a consistently high recognition rate across different neural networks, showcasing exceptional recognition performance and robustness.

The parallel alternating direction method of multipliers (ADMM) algorithms have gained popularity in statistics and machine learning for their efficient handling of large sample data problems. However, the parallel structure of these algorithms is based on the consensus problem, which can lead to an excessive number of auxiliary variables for high-dimensional data. In this paper, we propose a partition-insensitive parallel framework based on the linearized ADMM (LADMM) algorithm and apply it to solve nonconvex penalized smooth quantile regression problems. Compared to existing parallel ADMM algorithms, our algorithm does not rely on the consensus problem, resulting in a significant reduction in the number of variables that need to be updated at each iteration. It is worth noting that the solution of our algorithm remains unchanged regardless of how the total sample is divided, which is also known as partition-insensitivity. Furthermore, under some mild assumptions, we prove that the iterative sequence generated by the parallel LADMM algorithm converges to a critical point of the nonconvex optimization problem. Numerical experiments on synthetic and real datasets demonstrate the feasibility and validity of the proposed algorithm.

Functional autonomous systems often realize complex tasks by utilizing state machines comprised of discrete primitive behaviors and transitions between these behaviors. This architecture has been widely studied in the context of quasi-static and dynamics-independent systems. However, applications of this concept to dynamical systems are relatively sparse, despite extensive research on individual dynamic primitive behaviors, which we refer to as "motion primitives." This paper formalizes a process to determine dynamic-state aware conditions for transitions between motion primitives in the context of safety. The result is framed as a "motion primitive graph" that can be traversed by standard graph search and planning algorithms to realize functional autonomy. To demonstrate this framework, dynamic motion primitives -- including standing up, walking, and jumping -- and the transitions between these behaviors are experimentally realized on a quadrupedal robot.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司