亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Activation function is a pivotal component of deep learning, facilitating the extraction of intricate data patterns. While classical activation functions like ReLU and its variants are extensively utilized, their static nature and simplicity, despite being advantageous, often limit their effectiveness in specialized tasks. The trainable activation functions also struggle sometimes to adapt to the unique characteristics of the data. Addressing these limitations, we introduce a novel trainable activation function, adaptive piecewise approximated activation linear unit (APALU), to enhance the learning performance of deep learning across a broad range of tasks. It presents a unique set of features that enable it to maintain stability and efficiency in the learning process while adapting to complex data representations. Experiments reveal significant improvements over widely used activation functions for different tasks. In image classification, APALU increases MobileNet and GoogleNet accuracy by 0.37% and 0.04%, respectively, on the CIFAR10 dataset. In anomaly detection, it improves the average area under the curve of One-CLASS Deep SVDD by 0.8% on the MNIST dataset, 1.81% and 1.11% improvements with DifferNet, and knowledge distillation, respectively, on the MVTech dataset. Notably, APALU achieves 100% accuracy on a sign language recognition task with a limited dataset. For regression tasks, APALU enhances the performance of deep neural networks and recurrent neural networks on different datasets. These improvements highlight the robustness and adaptability of APALU across diverse deep-learning applications.

相關內容

在人工神經網絡中,給定一個輸入或一組輸入,節點的激活函數定義該節點的輸出。一個標準集成電路可以看作是一個由激活函數組成的數字網絡,根據輸入的不同,激活函數可以是開(1)或關(0)。這類似于神經網絡中的線性感知器的行為。然而,只有非線性激活函數允許這樣的網絡只使用少量的節點來計算重要問題,并且這樣的激活函數被稱為非線性。

Managing and preparing complex data for deep learning, a prevalent approach in large-scale data science can be challenging. Data transfer for model training also presents difficulties, impacting scientific fields like genomics, climate modeling, and astronomy. A large-scale solution like Google Pathways with a distributed execution environment for deep learning models exists but is proprietary. Integrating existing open-source, scalable runtime tools and data frameworks on high-performance computing (HPC) platforms are crucial to address these challenges. Our objective is to establish a smooth and unified method of combining data engineering and deep learning frameworks with diverse execution capabilities that can be deployed on various high-performance computing platforms, including cloud and supercomputers. We aim to support heterogeneous systems with accelerators, where Cylon and other data engineering and deep learning frameworks can utilize heterogeneous execution. To achieve this, we propose Radical-Cylon, a heterogeneous runtime system with a parallel and distributed data framework to execute Cylon as a task of Radical Pilot. We thoroughly explain Radical-Cylon's design and development and the execution process of Cylon tasks using Radical Pilot. This approach enables the use of heterogeneous MPI-communicators across multiple nodes. Radical-Cylon achieves better performance than Bare-Metal Cylon with minimal and constant overhead. Radical-Cylon achieves (4~15)% faster execution time than batch execution while performing similar join and sort operations with 35 million and 3.5 billion rows with the same resources. The approach aims to excel in both scientific and engineering research HPC systems while demonstrating robust performance on cloud infrastructures. This dual capability fosters collaboration and innovation within the open-source scientific research community.

Reliable numerical computations are central to scientific computing, but the floating-point arithmetic that enables large-scale models is error-prone. Numeric exceptions are a common occurrence and can propagate through code, leading to flawed results. This paper presents FlowFPX, a toolkit for systematically debugging floating-point exceptions by recording their flow, coalescing exception contexts, and fuzzing in select locations. These tools help scientists discover when exceptions happen and track down their origin, smoothing the way to a reliable codebase.

Energy consumption from the selection, training, and deployment of deep learning models has seen a significant uptick recently. This work aims to facilitate the design of energy-efficient deep learning models that require less computational resources and prioritize environmental sustainability by focusing on the energy consumption. Neural architecture search (NAS) benefits from tabular benchmarks, which evaluate NAS strategies cost-effectively through precomputed performance statistics. We advocate for including energy efficiency as an additional performance criterion in NAS. To this end, we introduce an enhanced tabular benchmark encompassing data on energy consumption for varied architectures. The benchmark, designated as EC-NAS, has been made available in an open-source format to advance research in energy-conscious NAS. EC-NAS incorporates a surrogate model to predict energy consumption, aiding in diminishing the energy expenditure of the dataset creation. Our findings emphasize the potential of EC-NAS by leveraging multi-objective optimization algorithms, revealing a balance between energy usage and accuracy. This suggests the feasibility of identifying energy-lean architectures with little or no compromise in performance.

TD-MPC is a model-based reinforcement learning (RL) algorithm that performs local trajectory optimization in the latent space of a learned implicit (decoder-free) world model. In this work, we present TD-MPC2: a series of improvements upon the TD-MPC algorithm. We demonstrate that TD-MPC2 improves significantly over baselines across 104 online RL tasks spanning 4 diverse task domains, achieving consistently strong results with a single set of hyperparameters. We further show that agent capabilities increase with model and data size, and successfully train a single 317M parameter agent to perform 80 tasks across multiple task domains, embodiments, and action spaces. We conclude with an account of lessons, opportunities, and risks associated with large TD-MPC2 agents. Explore videos, models, data, code, and more at //tdmpc2.com

Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 200+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司