In this work is provided a numerical study of a diffusion problem involving a second order term on the domain boundary (the Laplace-Beltrami operator) referred to as the \textit{Ventcel problem}.A variational formulation of the Ventcel problem is studied, leading to a finite element discretization.The focus is on the resort to high order curved meshes for the discretization of the physical domain.The computational errors are investigated both in terms of geometrical error and of finite element approximation error, respectively associated to the mesh degree $r\ge 1$ and to the finite element degree $k\ge 1$. The numerical experiments we led allow us to formulate a conjecture on the \textit{a priori} error estimates depending on the two parameters $r$ and $k$. In addition, these error estimates rely on the definition of a functional \textit{lift} with adapted properties on the boundary to move numerical solutions defined on the computational domain to the physical one.
In this work we develop a novel approach using deep neural networks to reconstruct the conductivity distribution in elliptic problems from one internal measurement. The approach is based on a mixed reformulation of the governing equation and utilizes the standard least-squares objective to approximate the conductivity and flux simultaneously, with deep neural networks as ansatz functions. We provide a thorough analysis of the neural network approximations for both continuous and empirical losses, including rigorous error estimates that are explicit in terms of the noise level, various penalty parameters and neural network architectural parameters (depth, width and parameter bound). We also provide extensive numerical experiments in two- and multi-dimensions to illustrate distinct features of the approach, e.g., excellent stability with respect to data noise and capability of solving high-dimensional problems.
This study investigates the use of continuous-time dynamical systems for sparse signal recovery. The proposed dynamical system is in the form of a nonlinear ordinary differential equation (ODE) derived from the gradient flow of the Lasso objective function. The sparse signal recovery process of this ODE-based approach is demonstrated by numerical simulations using the Euler method. The state of the continuous-time dynamical system eventually converges to the equilibrium point corresponding to the minimum of the objective function. To gain insight into the local convergence properties of the system, a linear approximation around the equilibrium point is applied, yielding a closed-form error evolution ODE. This analysis shows the behavior of convergence to the equilibrium point. In addition, a variational optimization problem is proposed to optimize a time-dependent regularization parameter in order to improve both convergence speed and solution quality. The deep unfolded-variational optimization method is introduced as a means of solving this optimization problem, and its effectiveness is validated through numerical experiments.
We present algorithms for solving high-frequency acoustic scattering problems in complex domains. The eikonal and transport partial differential equations from the WKB/geometric optic approximation of the Helmholtz equation are solved recursively to generate boundary conditions for a tree of eikonal/transport equation pairs, describing the phase and amplitude of a geometric optic wave propagating in a complicated domain, including reflection and diffraction. Edge diffraction is modeled using the uniform theory of diffraction. For simplicity, we limit our attention to domains with piecewise linear boundaries and a constant speed of sound. The domain is discretized into a conforming tetrahedron mesh. For the eikonal equation, we extend the jet marching method to tetrahedron meshes. Hermite interpolation enables second order accuracy for the eikonal and its gradient and first order accuracy for its Hessian, computed using cell averaging. To march the eikonal on an unstructured mesh, we introduce a new method of rejecting unphysical updates by considering Lagrange multipliers and local visibility. To handle accuracy degradation near caustics, we introduce several fast Lagrangian initialization algorithms. We store the dynamic programming plan uncovered by the marcher in order to propagate auxiliary quantities along characteristics. We introduce an approximate origin function which is computed using the dynamic programming plan, and whose 1/2-level set approximates the geometric optic shadow and reflection boundaries. We also use it to propagate geometric spreading factors and unit tangent vector fields needed to compute the amplitude and evaluate the high-frequency edge diffraction coefficient. We conduct numerical tests on a semi-infinite planar wedge to evaluate the accuracy of our method. We also show an example with a more realistic building model with challenging architectural features.
We propose a two-point flux approximation finite-volume scheme for the approximation of two cross-diffusion systems coupled by a free interface to account for vapor deposition. The moving interface is addressed with a cut-cell approach, where the mesh is locally deformed around the interface. The scheme preserves the structure of the continuous system, namely: mass conservation, nonnegativity, volume-filling constraints and decay of the free energy. Numerical results illustrate the properties of the scheme.
We introduce a nonconforming virtual element method for the Poisson equation on domains with curved boundary and internal interfaces. We prove arbitrary order optimal convergence in the energy and $L^2$ norms, and validate the theoretical results with numerical experiments. Compared to existing nodal virtual elements on curved domains, the proposed scheme has the advantage that it can be designed in any dimension.
Neural Radiance Fields (NeRF) have attracted significant attention due to their ability to synthesize novel scene views with great accuracy. However, inherent to their underlying formulation, the sampling of points along a ray with zero width may result in ambiguous representations that lead to further rendering artifacts such as aliasing in the final scene. To address this issue, the recent variant mip-NeRF proposes an Integrated Positional Encoding (IPE) based on a conical view frustum. Although this is expressed with an integral formulation, mip-NeRF instead approximates this integral as the expected value of a multivariate Gaussian distribution. This approximation is reliable for short frustums but degrades with highly elongated regions, which arises when dealing with distant scene objects under a larger depth of field. In this paper, we explore the use of an exact approach for calculating the IPE by using a pyramid-based integral formulation instead of an approximated conical-based one. We denote this formulation as Exact-NeRF and contribute the first approach to offer a precise analytical solution to the IPE within the NeRF domain. Our exploratory work illustrates that such an exact formulation Exact-NeRF matches the accuracy of mip-NeRF and furthermore provides a natural extension to more challenging scenarios without further modification, such as in the case of unbounded scenes. Our contribution aims to both address the hitherto unexplored issues of frustum approximation in earlier NeRF work and additionally provide insight into the potential future consideration of analytical solutions in future NeRF extensions.
Conductivity reconstruction in an inverse eddy current problem is considered in the present paper. With the electric field measurement on part of domain boundary, we formulate the reconstruction problem to a constrained optimization problem with total variation regularization. Existence and stability are proved for the solution to the optimization problem. The finite element method is employed to discretize the optimization problem. The gradient Lipschitz properties of the objective functional are established for the the discrete optimization problems. We propose the alternating direction method of multipliers to solve the discrete problem. Based on the the gradient Lipschitz property, we prove the convergence by extending the admissible set to the whole finite element space. Finally, we show some numerical experiments to illustrate the efficiency of the proposed methods.
Forecasting water content dynamics in heterogeneous porous media has significant interest in hydrological applications; in particular, the treatment of infiltration when in presence of cracks and fractures can be accomplished resorting to peridynamic theory, which allows a proper modeling of non localities in space. In this framework, we make use of Chebyshev transform on the diffusive component of the equation and then we integrate forward in time using an explicit method. We prove that the proposed spectral numerical scheme provides a solution converging to the unique solution in some appropriate Sobolev space. We finally exemplify on several different soils, also considering a sink term representing the root water uptake.
A novel methodology is proposed for clustering multivariate time series data using energy distance defined in Sz\'ekely and Rizzo (2013). Specifically, a dissimilarity matrix is formed using the energy distance statistic to measure separation between the finite dimensional distributions for the component time series. Once the pairwise dissimilarity matrix is calculated, a hierarchical clustering method is then applied to obtain the dendrogram. This procedure is completely nonparametric as the dissimilarities between stationary distributions are directly calculated without making any model assumptions. In order to justify this procedure, asymptotic properties of the energy distance estimates are derived for general stationary and ergodic time series. The method is illustrated in a simulation study for various component time series that are either linear or nonlinear. Finally the methodology is applied to two examples; one involves GDP of selected countries and the other is population size of various states in the U.S.A. in the years 1900 -1999.
In this work, we study discrete minimizers of the Ginzburg-Landau energy in finite element spaces. Special focus is given to the influence of the Ginzburg-Landau parameter $\kappa$. This parameter is of physical interest as large values can trigger the appearance of vortex lattices. Since the vortices have to be resolved on sufficiently fine computational meshes, it is important to translate the size of $\kappa$ into a mesh resolution condition, which can be done through error estimates that are explicit with respect to $\kappa$ and the spatial mesh width $h$. For that, we first work in an abstract framework for a general class of discrete spaces, where we present convergence results in a problem-adapted $\kappa$-weighted norm. Afterwards we apply our findings to Lagrangian finite elements and a particular generalized finite element construction. In numerical experiments we confirm that our derived $L^2$- and $H^1$-error estimates are indeed optimal in $\kappa$ and $h$.