亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Background: Estimations of causal effects from observational data are subject to various sources of bias. One method of adjusting for the residual biases in the estimation of a treatment effect is through negative control outcomes, where the treatment does not affect the outcome. The empirical calibration procedure is a technique that uses negative controls to calibrate p-values. An extension of empirical calibration calibrates the coverage of the 95% confidence interval of a treatment effect estimate by using negative control outcomes as well as positive control outcomes (where treatment affects the outcome). Methods: The effect of empirical calibration of confidence intervals was analyzed using simulated datasets with known treatment effects. The simulations consisted of binary treatment and binary outcome, with biases resulting from unmeasured confounder, model misspecification, measurement error, and lack of positivity. The performance of the empirical calibration was evaluated by determining the change in the coverage of the confidence interval and the bias in the treatment effect estimate. Results: Empirical calibration increased coverage of the 95% confidence interval of the treatment effect estimate under most bias scenarios but was inconsistent in adjusting the bias in the treatment effect estimate. Empirical calibration of confidence intervals was most effective when adjusting for the unmeasured confounding bias. Suitable negative controls had a large impact on the adjustment made by empirical calibration, but small improvements in the coverage of the outcome of interest were also observable when using unsuitable negative controls.

相關內容

This paper studies the design of two-wave experiments in the presence of spillover effects when the researcher aims to conduct precise inference on treatment effects. We consider units connected through a single network, local dependence among individuals, and a general class of estimands encompassing average treatment and average spillover effects. We introduce a statistical framework for designing two-wave experiments with networks, where the researcher optimizes over participants and treatment assignments to minimize the variance of the estimators of interest, using a first-wave (pilot) experiment to estimate the variance. We derive guarantees for inference on treatment effects and regret guarantees on the variance obtained from the proposed design mechanism. Our results illustrate the existence of a trade-off in the choice of the pilot study and formally characterize the pilot's size relative to the main experiment. Simulations using simulated and real-world networks illustrate the advantages of the method.

This paper concerns the numerical solution of the two-dimensional time-dependent partial integro-differential equation (PIDE) that holds for the values of European-style options under the two-asset Kou jump-diffusion model. A main feature of this equation is the presence of a nonlocal double integral term. For its numerical evaluation, we extend a highly efficient algorithm derived by Toivanen (2008) in the case of the one-dimensional Kou integral. The acquired algorithm for the two-dimensional Kou integral has optimal computational cost: the number of basic arithmetic operations is directly proportional to the number of spatial grid points in the semidiscretization. For the effective discretization in time, we study seven contemporary operator splitting schemes of the implicit-explicit (IMEX) and the alternating direction implicit (ADI) kind. All these schemes allow for a convenient, explicit treatment of the integral term. By ample numerical experiments for put-on-the-average option values, the stability and convergence behaviour as well as the mutual performance of the seven operator splitting schemes are investigated. Moreover, the Greeks Delta and Gamma are considered.

Bias correction can often improve the finite sample performance of estimators. We show that the choice of bias correction method has no effect on the higher-order variance of semiparametrically efficient parametric estimators, so long as the estimate of the bias is asymptotically linear. It is also shown that bootstrap, jackknife, and analytical bias estimates are asymptotically linear for estimators with higher-order expansions of a standard form. In particular, we find that for a variety of estimators the straightforward bootstrap bias correction gives the same higher-order variance as more complicated analytical or jackknife bias corrections. In contrast, bias corrections that do not estimate the bias at the parametric rate, such as the split-sample jackknife, result in larger higher-order variances in the i.i.d. setting we focus on. For both a cross-sectional MLE and a panel model with individual fixed effects, we show that the split-sample jackknife has a higher-order variance term that is twice as large as that of the `leave-one-out' jackknife.

We consider power means of independent and identically distributed (i.i.d.) non-integrable random variables. The power mean is a homogeneous quasi-arithmetic mean, and under some conditions, several limit theorems hold for the power mean as well as for the arithmetic mean of i.i.d. integrable random variables. We establish integrabilities and a limit theorem for the variances of the power mean of i.i.d. non-integrable random variables. We also consider behaviors of the power mean when the parameter of the power varies. Our feature is that the generator of the power mean is allowed to be complex-valued, which enables us to consider the power mean of random variables supported on the whole set of real numbers. The complex-valued power mean is an unbiased strongly-consistent estimator for the joint of the location and scale parameters of the Cauchy distribution.

The fundamental challenge of drawing causal inference is that counterfactual outcomes are not fully observed for any unit. Furthermore, in observational studies, treatment assignment is likely to be confounded. Many statistical methods have emerged for causal inference under unconfoundedness conditions given pre-treatment covariates, including propensity score-based methods, prognostic score-based methods, and doubly robust methods. Unfortunately for applied researchers, there is no `one-size-fits-all' causal method that can perform optimally universally. In practice, causal methods are primarily evaluated quantitatively on handcrafted simulated data. Such data-generative procedures can be of limited value because they are typically stylized models of reality. They are simplified for tractability and lack the complexities of real-world data. For applied researchers, it is critical to understand how well a method performs for the data at hand. Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods. The framework's novelty stems from its ability to generate synthetic data anchored at the empirical distribution for the observed sample, and therefore virtually indistinguishable from the latter. The approach allows the user to specify ground truth for the form and magnitude of causal effects and confounding bias as functions of covariates. Thus simulated data sets are used to evaluate the potential performance of various causal estimation methods when applied to data similar to the observed sample. We demonstrate Credence's ability to accurately assess the relative performance of causal estimation techniques in an extensive simulation study and two real-world data applications from Lalonde and Project STAR studies.

This study demonstrates the existence of a testable condition for the identification of the causal effect of a treatment on an outcome in observational data, which relies on two sets of variables: observed covariates to be controlled for and a suspected instrument. Under a causal structure commonly found in empirical applications, the testable conditional independence of the suspected instrument and the outcome given the treatment and the covariates has two implications. First, the instrument is valid, i.e. it does not directly affect the outcome (other than through the treatment) and is unconfounded conditional on the covariates. Second, the treatment is unconfounded conditional on the covariates such that the treatment effect is identified. We suggest tests of this conditional independence based on machine learning methods that account for covariates in a data-driven way and investigate their asymptotic behavior and finite sample performance in a simulation study. We also apply our testing approach to evaluating the impact of fertility on female labor supply when using the sibling sex ratio of the first two children as supposed instrument, which by and large points to a violation of our testable implication for the moderate set of socio-economic covariates considered.

Propensity score weighting is widely used to improve the representativeness and correct the selection bias in the voluntary sample. The propensity score is often developed using a model for the sampling probability, which can be subject to model misspecification. In this paper, we consider an alternative approach of estimating the inverse of the propensity scores using the density ratio function satisfying the self-efficiency condition. The smoothed density ratio function is obtained by the solution to the information projection onto the space satisfying the moment conditions on the balancing scores. By including the covariates for the outcome regression models only in the density ratio model, we can achieve efficient propensity score estimation. Penalized regression is used to identify important covariates. We further extend the proposed approach to the multivariate missing case. Some limited simulation studies are presented to compare with the existing methods.

Historically used in settings where the outcome is rare or data collection is expensive, outcome-dependent sampling is relevant to many modern settings where data is readily available for a biased sample of the target population, such as public administrative data. Under outcome-dependent sampling, common effect measures such as the average risk difference and the average risk ratio are not identified, but the conditional odds ratio is. Aggregation of the conditional odds ratio is challenging since summary measures are generally not identified. Furthermore, the marginal odds ratio can be larger (or smaller) than all conditional odds ratios. This so-called non-collapsibility of the odds ratio is avoidable if we use an alternative aggregation to the standard arithmetic mean. We provide a new definition of collapsibility that makes this choice of aggregation method explicit, and we demonstrate that the odds ratio is collapsible under geometric aggregation. We describe how to partially identify, estimate, and do inference on the geometric odds ratio under outcome-dependent sampling. Our proposed estimator is based on the efficient influence function and therefore has doubly robust-style properties.

A fundamental aspect of statistics is the integration of data from different sources. Classically, Fisher and others were focused on how to integrate homogeneous (or only mildly heterogeneous) sets of data. More recently, as data is becoming more accessible, the question of if data sets from different sources should be integrated is becoming more relevant. The current literature treats this as a question with only two answers: integrate or don't. Here we take a different approach, motivated by information-sharing principles coming from the shrinkage estimation literature. In particular, we deviate from the do/don't perspective and propose a dial parameter that controls the extent to which two data sources are integrated. How far this dial parameter should be turned is shown to depend, for example, on the informativeness of the different data sources as measured by Fisher information. In the context of generalized linear models, this more nuanced data integration framework leads to relatively simple parameter estimates and valid tests/confidence intervals. Moreover, we demonstrate both theoretically and empirically that setting the dial parameter according to our recommendation leads to more efficient estimation compared to other binary data integration schemes.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司