It is well known that almost all graphs are canonizable by a simple combinatorial routine known as color refinement. With high probability, this method assigns a unique label to each vertex of a random input graph and, hence, it is applicable only to asymmetric graphs. The strength of combinatorial refinement techniques becomes a subtle issue if the input graphs are highly symmetric. We prove that the combination of color refinement with vertex individualization produces a canonical labeling for almost all circulant digraphs (Cayley digraphs of a cyclic group). To our best knowledge, this is the first application of combinatorial refinement in the realm of vertex-transitive graphs. Remarkably, we do not even need the full power of the color refinement algorithm. We show that the canonical label of a vertex $v$ can be obtained just by counting walks of each length from $v$ to an individualized vertex. Our analysis also implies that almost all circulant graphs are canonizable by Tinhofer's canonization procedure. Finally, we show that a canonical Cayley representation can be constructed for almost all circulant graphs by the 2-dimensional Weisfeiler-Leman algorithm.
Electromagnetic stimulation probes and modulates the neural systems that control movement. Key to understanding their effects is the muscle recruitment curve, which maps evoked potential size against stimulation intensity. Current methods to estimate curve parameters require large samples; however, obtaining these is often impractical due to experimental constraints. Here, we present a hierarchical Bayesian framework that accounts for small samples, handles outliers, simulates high-fidelity data, and returns a posterior distribution over curve parameters that quantify estimation uncertainty. It uses a rectified-logistic function that estimates motor threshold and outperforms conventionally used sigmoidal alternatives in predictive performance, as demonstrated through cross-validation. In simulations, our method outperforms non-hierarchical models by reducing threshold estimation error on sparse data and requires fewer participants to detect shifts in threshold compared to frequentist testing. We present two common use cases involving electrical and electromagnetic stimulation data and provide an open-source library for Python, called hbMEP, for diverse applications.
Neural radiance fields (NeRFs) are a deep learning technique that can generate novel views of 3D scenes using sparse 2D images from different viewing directions and camera poses. As an extension of conventional NeRFs in underwater environment, where light can get absorbed and scattered by water, SeaThru-NeRF was proposed to separate the clean appearance and geometric structure of underwater scene from the effects of the scattering medium. Since the quality of the appearance and structure of underwater scenes is crucial for downstream tasks such as underwater infrastructure inspection, the reliability of the 3D reconstruction model should be considered and evaluated. Nonetheless, owing to the lack of ability to quantify uncertainty in 3D reconstruction of underwater scenes under natural ambient illumination, the practical deployment of NeRFs in unmanned autonomous underwater navigation is limited. To address this issue, we introduce a spatial perturbation field D_omega based on Bayes' rays in SeaThru-NeRF and perform Laplace approximation to obtain a Gaussian distribution N(0,Sigma) of the parameters omega, where the diagonal elements of Sigma correspond to the uncertainty at each spatial location. We also employ a simple thresholding method to remove artifacts from the rendered results of underwater scenes. Numerical experiments are provided to demonstrate the effectiveness of this approach.
A common method for estimating the Hessian operator from random samples on a low-dimensional manifold involves locally fitting a quadratic polynomial. Although widely used, it is unclear if this estimator introduces bias, especially in complex manifolds with boundaries and nonuniform sampling. Rigorous theoretical guarantees of its asymptotic behavior have been lacking. We show that, under mild conditions, this estimator asymptotically converges to the Hessian operator, with nonuniform sampling and curvature effects proving negligible, even near boundaries. Our analysis framework simplifies the intensive computations required for direct analysis.
Vision Transformers (ViTs) have excelled in vehicle re-identification (ReID) tasks. However, non-square aspect ratios of image or video input might significantly affect the re-identification performance. To address this issue, we propose a novel ViT-based ReID framework in this paper, which fuses models trained on a variety of aspect ratios. Our main contributions are threefold: (i) We analyze aspect ratio performance on VeRi-776 and VehicleID datasets, guiding input settings based on aspect ratios of original images. (ii) We introduce patch-wise mixup intra-image during ViT patchification (guided by spatial attention scores) and implement uneven stride for better object aspect ratio matching. (iii) We propose a dynamic feature fusing ReID network, enhancing model robustness. Our ReID method achieves a significantly improved mean Average Precision (mAP) of 91.0\% compared to the the closest state-of-the-art (CAL) result of 80.9\% on VehicleID dataset.
Graph combinatorial optimization problems are widely applicable and notoriously difficult to compute; for example, consider the traveling salesman or facility location problems. In this paper, we explore the feasibility of using convolutional neural networks (CNNs) on graph images to predict the cardinality of combinatorial properties of random graphs and networks. Specifically, we use image representations of modified adjacency matrices of random graphs as training samples for a CNN model to predict the stability number of random graphs; where the stability number is the cardinality of a maximum set of vertices containing no pairwise adjacency. Our approach demonstrates the potential for applying deep learning in combinatorial optimization problems.
Supervised models for speech enhancement are trained using artificially generated mixtures of clean speech and noise signals. However, the synthetic training conditions may not accurately reflect real-world conditions encountered during testing. This discrepancy can result in poor performance when the test domain significantly differs from the synthetic training domain. To tackle this issue, the UDASE task of the 7th CHiME challenge aimed to leverage real-world noisy speech recordings from the test domain for unsupervised domain adaptation of speech enhancement models. Specifically, this test domain corresponds to the CHiME-5 dataset, characterized by real multi-speaker and conversational speech recordings made in noisy and reverberant domestic environments, for which ground-truth clean speech signals are not available. In this paper, we present the objective and subjective evaluations of the systems that were submitted to the CHiME-7 UDASE task, and we provide an analysis of the results. This analysis reveals a limited correlation between subjective ratings and several supervised nonintrusive performance metrics recently proposed for speech enhancement. Conversely, the results suggest that more traditional intrusive objective metrics can be used for in-domain performance evaluation using the reverberant LibriCHiME-5 dataset developed for the challenge. The subjective evaluation indicates that all systems successfully reduced the background noise, but always at the expense of increased distortion. Out of the four speech enhancement methods evaluated subjectively, only one demonstrated an improvement in overall quality compared to the unprocessed noisy speech, highlighting the difficulty of the task. The tools and audio material created for the CHiME-7 UDASE task are shared with the community.
This investigation is firstly focused into showing that two metric parameters represent the same object in graph theory. That is, we prove that the multiset resolving sets and the ID-colorings of graphs are the same thing. We also consider some computational and combinatorial problems of the multiset dimension, or equivalently, the ID-number of graphs. We prove that the decision problem concerning finding the multiset dimension of graphs is NP-complete. We consider the multiset dimension of king grids and prove that it is bounded above by 4. We also give a characterization of the strong product graphs with one factor being a complete graph, and whose multiset dimension is not infinite.
Time-lapse full-waveform inversion (FWI) has become a powerful tool for characterizing and monitoring subsurface changes in various geophysical applications. However, non-repeatability (NR) issues caused, for instance, by GPS inaccuracies, often make it difficult to obtain unbiased time-lapse models. In this work we explore the portability of combining a receiver-extension FWI approach and Bayesian analysis to mitigate time-lapse noises arising from NR issues. The receiver-extension scheme introduces an artificial degree of freedom in positioning receivers, intending to minimize kinematic mismatches between modeled and observed data. Bayesian analysis systematically explores several potential solutions to mitigate time-lapse changes not associated with reservoir responses, assigning probabilities to each scenario based on prior information and available evidence. We consider two different subsurface models to demonstrate the potential of proposed approaches. First, using the Marmousi model, we investigate two NR scenarios associated with background noise in seismic data. Second, using a challenging deep-water Brazilian pre-salt setting, we investigate several NR scenarios to simulate real-world challenges. Our results demonstrate that combining Bayesian analysis with the receiver-extension FWI strategy can mitigate adverse NR effects successfully, producing cleaner and more reliable time-lapse models than conventional approaches. The results also reveal that the proposed Bayesian weighted procedure is a valuable tool for determining time-lapse estimates through statistical analysis of pre-existing models, allowing its application in ongoing time-lapse (4D) projects.
Mutual information has many applications in image alignment and matching, mainly due to its ability to measure the statistical dependence between two images, even if the two images are from different modalities (e.g., CT and MRI). It considers not only the pixel intensities of the images but also the spatial relationships between the pixels. In this project, we apply the mutual information formula to image matching, where image A is the moving object and image B is the target object and calculate the mutual information between them to evaluate the similarity between the images. For comparison, we also used entropy and information-gain methods to test the dependency of the images. We also investigated the effect of different environments on the mutual information of the same image and used experiments and plots to demonstrate.
Though current CV models have been able to achieve high levels of accuracy on small-scale images classification dataset with hundreds or thousands of categories, many models become infeasible in computational or space consumption when it comes to large-scale dataset with more than 50,000 categories. In this paper, we provide a viable solution for classifying large-scale species datasets using traditional CV techniques such as.features extraction and processing, BOVW(Bag of Visual Words) and some statistical learning technics like Mini-Batch K-Means,SVM which are used in our works. And then mixed with a neural network model. When applying these techniques, we have done some optimization in time and memory consumption, so that it can be feasible for large-scale dataset. And we also use some technics to reduce the impact of mislabeling data. We use a dataset with more than 50, 000 categories, and all operations are done on common computer with l 6GB RAM and a CPU of 3. OGHz. Our contributions are: 1) analysis what problems may meet in the training processes, and presents several feasible ways to solve these problems. 2) Make traditional CV models combined with neural network models provide some feasible scenarios for training large-scale classified datasets within the constraints of time and spatial resources.