Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement current authentication techniques. By leveraging the unique brainwave patterns of individuals, these systems offer the possibility of creating authentication solutions that are resistant to theft, hands-free, accessible, and potentially even revocable. However, despite the growing stream of research in this area, faster advance is hindered by reproducibility problems. Issues such as the lack of standard reporting schemes for performance results and system configuration, or the absence of common evaluation benchmarks, make comparability and proper assessment of different biometric solutions challenging. Further, barriers are erected to future work when, as so often, source code is not published open access. To bridge this gap, we introduce NeuroBench, a flexible open source tool to benchmark brainwave-based authentication models. It incorporates nine diverse datasets, implements a comprehensive set of pre-processing parameters and machine learning algorithms, enables testing under two common adversary models (known vs unknown attacker), and allows researchers to generate full performance reports and visualizations. We use NeuroBench to investigate the shallow classifiers and deep learning-based approaches proposed in the literature, and to test robustness across multiple sessions. We observe a 37.6% reduction in Equal Error Rate (EER) for unknown attacker scenarios (typically not tested in the literature), and we highlight the importance of session variability to brainwave authentication. All in all, our results demonstrate the viability and relevance of NeuroBench in streamlining fair comparisons of algorithms, thereby furthering the advancement of brainwave-based authentication through robust methodological practices.
Addressing the challenges related to data sparsity, cold-start problems, and diversity in recommendation systems is both crucial and demanding. Many current solutions leverage knowledge graphs to tackle these issues by combining both item-based and user-item collaborative signals. A common trend in these approaches focuses on improving ranking performance at the cost of escalating model complexity, reducing diversity, and complicating the task. It is essential to provide recommendations that are both personalized and diverse, rather than solely relying on achieving high rank-based performance, such as Click-through Rate, Recall, etc. In this paper, we propose a hybrid multi-task learning approach, training on user-item and item-item interactions. We apply item-based contrastive learning on descriptive text, sampling positive and negative pairs based on item metadata. Our approach allows the model to better understand the relationships between entities within the knowledge graph by utilizing semantic information from text. It leads to more accurate, relevant, and diverse user recommendations and a benefit that extends even to cold-start users who have few interactions with items. We perform extensive experiments on two widely used datasets to validate the effectiveness of our approach. Our findings demonstrate that jointly training user-item interactions and item-based signals using synopsis text is highly effective. Furthermore, our results provide evidence that item-based contrastive learning enhances the quality of entity embeddings, as indicated by metrics such as uniformity and alignment.
Joint entity and relation extraction is the fundamental task of information extraction, consisting of two subtasks: named entity recognition and relation extraction. However, most existing joint extraction methods suffer from issues of feature confusion or inadequate interaction between the two subtasks. Addressing these challenges, in this work, we propose a Co-Attention network for joint entity and Relation Extraction (CARE). Our approach includes adopting a parallel encoding strategy to learn separate representations for each subtask, aiming to avoid feature overlap or confusion. At the core of our approach is the co-attention module that captures two-way interaction between the two subtasks, allowing the model to leverage entity information for relation prediction and vice versa, thus promoting mutual enhancement. Through extensive experiments on three benchmark datasets for joint entity and relation extraction (NYT, WebNLG, and SciERC), we demonstrate that our proposed model outperforms existing baseline models. Our code will be available at //github.com/kwj0x7f/CARE.
We propose a voting-driven semi-supervised approach to automatically acquire the typical duration of an event and use it as pseudo-labeled data. The human evaluation demonstrates that our pseudo labels exhibit surprisingly high accuracy and balanced coverage. In the temporal commonsense QA task, experimental results show that using only pseudo examples of 400 events, we achieve performance comparable to the existing BERT-based weakly supervised approaches that require a significant amount of training examples. When compared to the RoBERTa baselines, our best approach establishes state-of-the-art performance with a 7% improvement in Exact Match.
Describing statistical dependencies is foundational to empirical scientific research. For uncovering intricate and possibly non-linear dependencies between a single target variable and several source variables within a system, a principled and versatile framework can be found in the theory of Partial Information Decomposition (PID). Nevertheless, the majority of existing PID measures are restricted to categorical variables, while many systems of interest in science are continuous. In this paper, we present a novel analytic formulation for continuous redundancy--a generalization of mutual information--drawing inspiration from the concept of shared exclusions in probability space as in the discrete PID definition of $I^\mathrm{sx}_\cap$. Furthermore, we introduce a nearest-neighbor based estimator for continuous PID, and showcase its effectiveness by applying it to a simulated energy management system provided by the Honda Research Institute Europe GmbH. This work bridges the gap between the measure-theoretically postulated existence proofs for a continuous $I^\mathrm{sx}_\cap$ and its practical application to real-world scientific problems.
Ransomware has been predominantly a threat to Windows systems. But, Linux systems became interesting for cybercriminals and this trend is expected to continue. This endangers IoT ecosystems, whereas many IoT systems are based on Linux (e.g. cloud infrastructure and gateways). This paper researches how currently employed forensic techniques can be applied to Linux ransomware and evaluates the maturity as well as the impact on the system. While Windows-based ransomware predominantly uses RSA and AES for key management, a variety of approaches was identified for Linux. Cybercriminals appear to be deliberately moving away from RSA and AES to make Live forensic investigations more difficult. Linux ransomware is developed for a predefined goal and does not exploit the full potential of damage. It appears in an early stage and is expected to reach a similar potential to Windows-based malware. The results generated provided an excellent basic understanding to discuss and assess implications on the IoT industry at an early stage of development.
While large language models (LLMs) equipped with techniques like chain-of-thought prompting have demonstrated impressive capabilities, they still fall short in their ability to reason robustly in complex settings. However, evaluating LLM reasoning is challenging because system capabilities continue to grow while benchmark datasets for tasks like logical deduction have remained static. We introduce MuSR, a dataset for evaluating language models on multistep soft reasoning tasks specified in a natural language narrative. This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm, enabling the construction of complex reasoning instances that challenge GPT-4 (e.g., murder mysteries roughly 1000 words in length) and which can be scaled further as more capable LLMs are released. Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning; this makes it simultaneously much more challenging than other synthetically-crafted benchmarks while remaining realistic and tractable for human annotators to solve with high accuracy. We evaluate a range of LLMs and prompting techniques on this dataset and characterize the gaps that remain for techniques like chain-of-thought to perform robust reasoning.
Core computations in Graph Neural Network (GNN) training and inference are often mapped to sparse matrix operations such as sparse-dense matrix multiplication (SpMM). These sparse operations are harder to optimize by manual tuning because their performance depends significantly on the sparsity of input graphs, GNN models, and computing platforms. To address this challenge, we present iSpLib, a PyTorch-based C++ library equipped with auto-tuned sparse operations. iSpLib expedites GNN training with a cache-enabled backpropagation that stores intermediate matrices in local caches. The library offers a user-friendly Python plug-in that allows users to take advantage of our optimized PyTorch operations out-of-the-box for any existing linear algebra-based PyTorch implementation of popular GNNs (Graph Convolution Network, GraphSAGE, Graph Inference Network, etc.) with only two lines of additional code. We demonstrate that iSpLib obtains up to 27x overall training speedup compared to the equivalent PyTorch 2.1.0 and PyTorch Geometric 2.4.0 implementations on the CPU. Our library is publicly available at //github.com/HipGraph/iSpLib (//doi.org/10.5281/zenodo.10806511).
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.