亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ubiquity of camera-enabled devices has led to large amounts of unlabeled image data being produced at the edge. The integration of self-supervised learning (SSL) and federated learning (FL) into one coherent system can potentially offer data privacy guarantees while also advancing the quality and robustness of the learned visual representations without needing to move data around. However, client bias and divergence during FL aggregation caused by data heterogeneity limits the performance of learned visual representations on downstream tasks. In this paper, we propose a new aggregation strategy termed Layer-wise Divergence Aware Weight Aggregation (L-DAWA) to mitigate the influence of client bias and divergence during FL aggregation. The proposed method aggregates weights at the layer-level according to the measure of angular divergence between the clients' model and the global model. Extensive experiments with cross-silo and cross-device settings on CIFAR-10/100 and Tiny ImageNet datasets demonstrate that our methods are effective and obtain new SOTA performance on both contrastive and non-contrastive SSL approaches.

相關內容

On-device Deep Neural Network (DNN) inference consumes significant computing resources and development efforts. To alleviate that, we propose LUT-NN, the first system to empower inference by table lookup, to reduce inference cost. LUT-NN learns the typical features for each operator, named centroid, and precompute the results for these centroids to save in lookup tables. During inference, the results of the closest centroids with the inputs can be read directly from the table, as the approximated outputs without computations. LUT-NN integrates two major novel techniques: (1) differentiable centroid learning through backpropagation, which adapts three levels of approximation to minimize the accuracy impact by centroids; (2) table lookup inference execution, which comprehensively considers different levels of parallelism, memory access reduction, and dedicated hardware units for optimal performance. LUT-NN is evaluated on multiple real tasks, covering image and speech recognition, and nature language processing. Compared to related work, LUT-NN improves accuracy by 66% to 92%, achieving similar level with the original models. LUT-NN reduces the cost at all dimensions, including FLOPs ($\leq$ 16x), model size ($\leq$ 7x), latency ($\leq$ 6.8x), memory ($\leq$ 6.5x), and power ($\leq$ 41.7%).

Object tracking is an important functionality of edge video analytic systems and services. Multi-object tracking (MOT) detects the moving objects and tracks their locations frame by frame as real scenes are being captured into a video. However, it is well known that real time object tracking on the edge poses critical technical challenges, especially with edge devices of heterogeneous computing resources. This paper examines the performance issues and edge-specific optimization opportunities for object tracking. We will show that even the well trained and optimized MOT model may still suffer from random frame dropping problems when edge devices have insufficient computation resources. We present several edge specific performance optimization strategies, collectively coined as EMO, to speed up the real time object tracking, ranging from window-based optimization to similarity based optimization. Extensive experiments on popular MOT benchmarks demonstrate that our EMO approach is competitive with respect to the representative methods for on-device object tracking techniques in terms of run-time performance and tracking accuracy. EMO is released on Github at //github.com/git-disl/EMO.

The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization.

The evolution of communication technologies, exemplified by the Internet of Things (IoT) and cloud computing, has significantly enhanced the speed and accessibility of Public Safety (PS) services, critical to ensuring the safety and security of our environment. However, these advancements also introduce inherent security and privacy challenges. In response, this research presents a novel and adaptable access control scheme tailored to PS services in cloud-supported IoT environments. Our proposed access control protocol leverages the strengths of Key Policy Attribute Based Encryption (KP-ABE) and Identity-Based Broadcast Encryption (IDBB), combining them to establish a robust security framework for cloud-supported IoT in the context of PS services. Through the implementation of an Elliptic Curve Diffie-Hellman (ECDH) scheme between entities, we ensure entity authentication, data confidentiality, and integrity, addressing fundamental security requirements. A noteworthy aspect of our lightweight protocol is the delegation of user private key generation within the KP-ABE scheme to an untrusted cloud entity. This strategic offloading of computational and communication overhead preserves data privacy, as the cloud is precluded from accessing sensitive information. To achieve this, we employ an IDBB scheme to generate secret private keys for system users based on their roles, requiring the logical conjunction ('AND') of user attributes to access data. This architecture effectively conceals user identities from the cloud service provider. Comprehensive analysis validates the efficacy of the proposed protocol, confirming its ability to ensure system security and availability within acceptable parameters.

We propose a novel computing runtime that exposes remote compute devices via the cross-vendor open heterogeneous computing standard OpenCL and can execute compute tasks on the MEC cluster side across multiple servers in a scalable manner. Intermittent UE connection loss is handled gracefully even if the device's IP address changes on the way. Network-induced latency is minimized by transferring data and signaling command completions between remote devices in a peer-to-peer fashion directly to the target server with a streamlined TCP-based protocol that yields a command latency of only 60 microseconds on top of network round-trip latency in synthetic benchmarks. The runtime can utilize RDMA to speed up inter-server data transfers by an additional 60% compared to the TCP-based solution. The benefits of the proposed runtime in MEC applications are demonstrated with a smartphone-based augmented reality rendering case study. Measurements show up to 19x improvements to frame rate and 17x improvements to local energy consumption when using the proposed runtime to offload AR rendering from a smartphone. Scalability to multiple GPU servers in real-world applications is shown in a computational fluid dynamics simulation, which scales with the number of servers at roughly 80% efficiency which is comparable to an MPI port of the same simulation.

Image fusion aims to generate a high-quality image from multiple images captured under varying conditions. The key problem of this task is to preserve complementary information while filtering out irrelevant information for the fused result. However, existing methods address this problem by leveraging static convolutional neural networks (CNNs), suffering two inherent limitations during feature extraction, i.e., being unable to handle spatial-variant contents and lacking guidance from multiple inputs. In this paper, we propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs. Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive feature extraction, composed of a mutual-guided cross-attention (MGCA) module and a dynamic filter predictor, where the former incorporates additional guidance from different inputs and the latter generates spatial-variant kernels for different locations. In addition, we introduce a parallel feature fusion (PFF) module to effectively fuse local and global information of the extracted features. To further reduce the redundancy among the extracted features while simultaneously preserving their shared structural information, we devise a novel loss function that combines the minimization of normalized mutual information (NMI) with an estimated gradient mask. Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks. The code and model are publicly available at: //github.com/Guanys-dar/MGDN.

Automation of High-Level Context (HLC) reasoning for intelligent systems at scale is imperative due to the unceasing accumulation of contextual data in the IoT era, the trend of the fusion of data from multi-sources, and the intrinsic complexity and dynamism of the context-based decision-making process. To mitigate this issue, we propose an automatic context reasoning framework CSM-H-R, which programmatically combines ontologies and states at runtime and the model-storage phase for attaining the ability to recognize meaningful HLC, and the resulting data representation can be applied to different reasoning techniques. Case studies are developed based on an intelligent elevator system in a smart campus setting. An implementation of the framework - a CSM Engine, and the experiments of translating the HLC reasoning into vector and matrix computing especially take care of the dynamic aspects of context and present the potentiality of using advanced mathematical and probabilistic models to achieve the next level of automation in integrating intelligent systems; meanwhile, privacy protection support is achieved by anonymization through label embedding and reducing information correlation. The code of this study is available at: //github.com/songhui01/CSM-H-R.

Frustrating text entry interface has been a major obstacle in participating in social activities in augmented reality (AR). Popular options, such as mid-air keyboard interface, wireless keyboards or voice input, either suffer from poor ergonomic design, limited accuracy, or are simply embarrassing to use in public. This paper proposes and validates a deep-learning based approach, that enables AR applications to accurately predict keystrokes from the user perspective RGB video stream that can be captured by any AR headset. This enables a user to perform typing activities on any flat surface and eliminates the need of a physical or virtual keyboard. A two-stage model, combing an off-the-shelf hand landmark extractor and a novel adaptive Convolutional Recurrent Neural Network (C-RNN), was trained using our newly built dataset. The final model was capable of adaptive processing user-perspective video streams at ~32 FPS. This base model achieved an overall accuracy of $91.05\%$ when typing 40 Words per Minute (wpm), which is how fast an average person types with two hands on a physical keyboard. The Normalised Levenshtein Distance also further confirmed the real-world applicability of that our approach. The promising results highlight the viability of our approach and the potential for our method to be integrated into various applications. We also discussed the limitations and future research required to bring such technique into a production system.

In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

北京阿比特科技有限公司