Current methods for generating attractive headlines often learn directly from data, which bases attractiveness on the number of user clicks and views. Although clicks or views do reflect user interest, they can fail to reveal how much interest is raised by the writing style and how much is due to the event or topic itself. Also, such approaches can lead to harmful inventions by over-exaggerating the content, aggravating the spread of false information. In this work, we propose HonestBait, a novel framework for solving these issues from another aspect: generating headlines using forward references (FRs), a writing technique often used for clickbait. A self-verification process is included during training to avoid spurious inventions. We begin with a preliminary user study to understand how FRs affect user interest, after which we present PANCO1, an innovative dataset containing pairs of fake news with verified news for attractive but faithful news headline generation. Automatic metrics and human evaluations show that our framework yields more attractive results (+11.25% compared to human-written verified news headlines) while maintaining high veracity, which helps promote real information to fight against fake news.
As tractography datasets continue to grow in size, there is a need for improved visualization methods that can capture structural patterns occurring in large tractography datasets. Transparency is an increasingly important aspect of finding these patterns in large datasets but is inaccessible to tractography due to performance limitations. In this paper, we propose a rendering method that achieves performant rendering of transparent streamlines, allowing for exploration of deeper brain structures interactively. The method achieves this through a novel approximate order-independent transparency method that utilizes voxelization and caching view-dependent line orders per voxel. We compare our transparency method with existing tractography visualization software in terms of performance and the ability to capture deeper structures in the dataset.
Long-tailed distribution of semantic categories, which has been often ignored in conventional methods, causes unsatisfactory performance in semantic segmentation on tail categories. In this paper, we focus on the problem of long-tailed semantic segmentation. Although some long-tailed recognition methods (e.g., re-sampling/re-weighting) have been proposed in other problems, they can probably compromise crucial contextual information and are thus hardly adaptable to the problem of long-tailed semantic segmentation. To address this issue, we propose MEDOE, a novel framework for long-tailed semantic segmentation via contextual information ensemble-and-grouping. The proposed two-sage framework comprises a multi-expert decoder (MED) and a multi-expert output ensemble (MOE). Specifically, the MED includes several "experts". Based on the pixel frequency distribution, each expert takes the dataset masked according to the specific categories as input and generates contextual information self-adaptively for classification; The MOE adopts learnable decision weights for the ensemble of the experts' outputs. As a model-agnostic framework, our MEDOE can be flexibly and efficiently coupled with various popular deep neural networks (e.g., DeepLabv3+, OCRNet, and PSPNet) to improve their performance in long-tailed semantic segmentation. Experimental results show that the proposed framework outperforms the current methods on both Cityscapes and ADE20K datasets by up to 1.78% in mIoU and 5.89% in mAcc.
Existing studies for applying the mixup technique on graphs mainly focus on graph classification tasks, while the research in node classification is still under-explored. In this paper, we propose a novel mixup augmentation for node classification called Structural Mixup (S-Mixup). The core idea is to take into account the structural information while mixing nodes. Specifically, S-Mixup obtains pseudo-labels for unlabeled nodes in a graph along with their prediction confidence via a Graph Neural Network (GNN) classifier. These serve as the criteria for the composition of the mixup pool for both inter and intra-class mixups. Furthermore, we utilize the edge gradient obtained from the GNN training and propose a gradient-based edge selection strategy for selecting edges to be attached to the nodes generated by the mixup. Through extensive experiments on real-world benchmark datasets, we demonstrate the effectiveness of S-Mixup evaluated on the node classification task. We observe that S-Mixup enhances the robustness and generalization performance of GNNs, especially in heterophilous situations. The source code of S-Mixup can be found at \url{//github.com/SukwonYun/S-Mixup}
In high-performance computing (HPC), the demand for efficient parallel programming models has grown dramatically since the end of Dennard Scaling and the subsequent move to multi-core CPUs. OpenMP stands out as a popular choice due to its simplicity and portability, offering a directive-driven approach for shared-memory parallel programming. Despite its wide adoption, however, there is a lack of comprehensive data on the actual usage of OpenMP constructs, hindering unbiased insights into its popularity and evolution. This paper presents a statistical analysis of OpenMP usage and adoption trends based on a novel and extensive database, HPCORPUS, compiled from GitHub repositories containing C, C++, and Fortran code. The results reveal that OpenMP is the dominant parallel programming model, accounting for 45% of all analyzed parallel APIs. Furthermore, it has demonstrated steady and continuous growth in popularity over the past decade. Analyzing specific OpenMP constructs, the study provides in-depth insights into their usage patterns and preferences across the three languages. Notably, we found that while OpenMP has a strong "common core" of constructs in common usage (while the rest of the API is less used), there are new adoption trends as well, such as simd and target directives for accelerated computing and task for irregular parallelism. Overall, this study sheds light on OpenMP's significance in HPC applications and provides valuable data for researchers and practitioners. It showcases OpenMP's versatility, evolving adoption, and relevance in contemporary parallel programming, underlining its continued role in HPC applications and beyond. These statistical insights are essential for making informed decisions about parallelization strategies and provide a foundation for further advancements in parallel programming models and techniques.
Visual chart recognition systems are gaining increasing attention due to the growing demand for automatically identifying table headers and values from chart images. Current methods rely on keypoint detection to estimate data element shapes in charts but suffer from grouping errors in post-processing. To address this issue, we propose ChartDETR, a transformer-based multi-shape detector that localizes keypoints at the corners of regular shapes to reconstruct multiple data elements in a single chart image. Our method predicts all data element shapes at once by introducing query groups in set prediction, eliminating the need for further postprocessing. This property allows ChartDETR to serve as a unified framework capable of representing various chart types without altering the network architecture, effectively detecting data elements of diverse shapes. We evaluated ChartDETR on three datasets, achieving competitive results across all chart types without any additional enhancements. For example, ChartDETR achieved an F1 score of 0.98 on Adobe Synthetic, significantly outperforming the previous best model with a 0.71 F1 score. Additionally, we obtained a new state-of-the-art result of 0.97 on ExcelChart400k. The code will be made publicly available.
Large Language Models (LLMs) hold immense potential to generate synthetic data of high quality and utility, which has numerous applications from downstream model training to practical data utilisation. However, contemporary models, despite their impressive capacities, consistently struggle to produce both coherent and diverse data. To address the coherency issue, we introduce contrastive expert guidance, where the difference between the logit distributions of fine-tuned and base language models is emphasised to ensure domain adherence. In order to ensure diversity, we utilise existing real and synthetic examples as negative prompts to the model. We deem this dual-pronged approach to logit reshaping as STEER: Semantic Text Enhancement via Embedding Repositioning. STEER operates at inference-time and systematically guides the LLMs to strike a balance between adherence to the data distribution (ensuring semantic fidelity) and deviation from prior synthetic examples or existing real datasets (ensuring diversity and authenticity). This delicate balancing act is achieved by dynamically moving towards or away from chosen representations in the latent space. STEER demonstrates improved performance over previous synthetic data generation techniques, exhibiting better balance between data diversity and coherency across three distinct tasks: hypothesis generation, toxic and non-toxic comment generation, and commonsense reasoning task generation. We demonstrate how STEER allows for fine-tuned control over the diversity-coherency trade-off via its hyperparameters, highlighting its versatility.
A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the generalization of the global model on each client. To address this, we propose a method Federated learning with Adaptive Local Aggregation (FedALA) by capturing the desired information in the global model for client models in personalized FL. The key component of FedALA is an Adaptive Local Aggregation (ALA) module, which can adaptively aggregate the downloaded global model and local model towards the local objective on each client to initialize the local model before training in each iteration. To evaluate the effectiveness of FedALA, we conduct extensive experiments with five benchmark datasets in computer vision and natural language processing domains. FedALA outperforms eleven state-of-the-art baselines by up to 3.27% in test accuracy. Furthermore, we also apply ALA module to other federated learning methods and achieve up to 24.19% improvement in test accuracy.
Standard bandit algorithms that assume continual reallocation of measurement effort are challenging to implement due to delayed feedback and infrastructural/organizational difficulties. Motivated by practical instances involving a handful of reallocation epochs in which outcomes are measured in batches, we develop a computation-driven adaptive experimentation framework that can flexibly handle batching. Our main observation is that normal approximations, which are universal in statistical inference, can also guide the design of adaptive algorithms. By deriving a Gaussian sequential experiment, we formulate a dynamic program that can leverage prior information on average rewards. Instead of the typical theory-driven paradigm, we leverage computational tools and empirical benchmarking for algorithm development. In particular, our empirical analysis highlights a simple yet effective algorithm, Residual Horizon Optimization, which iteratively solves a planning problem using stochastic gradient descent. Our approach significantly improves statistical power over standard methods, even when compared to Bayesian bandit algorithms (e.g., Thompson sampling) that require full distributional knowledge of individual rewards. Overall, we expand the scope of adaptive experimentation to settings that are difficult for standard methods, involving limited adaptivity, low signal-to-noise ratio, and unknown reward distributions.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.