亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Samplers are the backbone of the implementations of any randomised algorithm. Unfortunately, obtaining an efficient algorithm to test the correctness of samplers is very hard to find. Recently, in a series of works, testers like $\mathsf{Barbarik}$, $\mathsf{Teq}$, $\mathsf{Flash}$ for testing of some particular kinds of samplers, like CNF-samplers and Horn-samplers, were obtained. But their techniques have a significant limitation because one can not expect to use their methods to test for other samplers, such as perfect matching samplers or samplers for sampling linear extensions in posets. In this paper, we present a new testing algorithm that works for such samplers and can estimate the distance of a new sampler from a known sampler (say, uniform sampler). Testing the identity of distributions is the heart of testing the correctness of samplers. This paper's main technical contribution is developing a new distance estimation algorithm for distributions over high-dimensional cubes using the recently proposed sub-cube conditioning sampling model. Given subcube conditioning access to an unknown distribution $P$, and a known distribution $Q$ defined over $\{0,1\}^n$, our algorithm $\mathsf{CubeProbeEst}$ estimates the variation distance between $P$ and $Q$ within additive error $\zeta$ using $O\left({n^2}/{\zeta^4}\right)$ subcube conditional samples from $P$. Following the testing-via-learning paradigm, we also get a tester which distinguishes between the cases when $P$ and $Q$ are $\varepsilon$-close or $\eta$-far in variation distance with probability at least $0.99$ using $O({n^2}/{(\eta-\varepsilon)^4})$ subcube conditional samples. The estimation algorithm in the sub-cube conditioning sampling model helps us to design the first tester for self-reducible samplers.

相關內容

Models of choice are a fundamental input to many now-canonical optimization problems in the field of Operations Management, including assortment, inventory, and price optimization. Naturally, accurate estimation of these models from data is a critical step in the application of these optimization problems in practice. Concurrently, recent advancements in deep learning have sparked interest in integrating these techniques into choice modeling. However, there is a noticeable research gap at the intersection of deep learning and choice modeling, particularly with both theoretical and empirical foundations. Thus motivated, we first propose a choice model that is the first to successfully (both theoretically and practically) leverage a modern neural network architectural concept (self-attention). Theoretically, we show that our attention-based choice model is a low-rank generalization of the Halo Multinomial Logit (Halo-MNL) model. We prove that whereas the Halo-MNL requires $\Omega(m^2)$ data samples to estimate, where $m$ is the number of products, our model supports a natural nonconvex estimator (in particular, that which a standard neural network implementation would apply) which admits a near-optimal stationary point with $O(m)$ samples. Additionally, we establish the first realistic-scale benchmark for choice model estimation on real data, conducting the most extensive evaluation of existing models to date, thereby highlighting our model's superior performance.

We explore asynchronous programming with algebraic effects. We complement their conventional synchronous treatment by showing how to naturally also accommodate asynchrony within them, namely, by decoupling the execution of operation calls into signalling that an operation's implementation needs to be executed, and interrupting a running computation with the operation's result, to which the computation can react by installing interrupt handlers. We formalise these ideas in a small core calculus and demonstrate its flexibility using examples ranging from a multi-party web application, to pre-emptive multi-threading, to (cancellable) remote function calls, to a parallel variant of runners of algebraic effects. In addition, the paper is accompanied by a formalisation of the calculus's type safety proofs in Agda, and a prototype implementation in OCaml.

New algorithms for embedding graphs have reduced the asymptotic complexity of finding low-dimensional representations. One-Hot Graph Encoder Embedding (GEE) uses a single, linear pass over edges and produces an embedding that converges asymptotically to the spectral embedding. The scaling and performance benefits of this approach have been limited by a serial implementation in an interpreted language. We refactor GEE into a parallel program in the Ligra graph engine that maps functions over the edges of the graph and uses lock-free atomic instrutions to prevent data races. On a graph with 1.8B edges, this results in a 500 times speedup over the original implementation and a 17 times speedup over a just-in-time compiled version.

Machine learning algorithms are becoming integrated into more and more high-stakes decision-making processes, such as in social welfare issues. Due to the need of mitigating the potentially disparate impacts from algorithmic predictions, many approaches have been proposed in the emerging area of fair machine learning. However, the fundamental problem of characterizing Bayes-optimal classifiers under various group fairness constraints has only been investigated in some special cases. Based on the classical Neyman-Pearson argument (Neyman and Pearson, 1933; Shao, 2003) for optimal hypothesis testing, this paper provides a unified framework for deriving Bayes-optimal classifiers under group fairness. This enables us to propose a group-based thresholding method we call FairBayes, that can directly control disparity, and achieve an essentially optimal fairness-accuracy tradeoff. These advantages are supported by thorough experiments.

Optimal transport (OT) barycenters are a mathematically grounded way of averaging probability distributions while capturing their geometric properties. In short, the barycenter task is to take the average of a collection of probability distributions w.r.t. given OT discrepancies. We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions. Our approach is built upon the dual reformulation of the EOT problem based on weak OT, which has recently gained the attention of the ML community. Beyond its novelty, our method enjoys several advantageous properties: (i) we establish quality bounds for the recovered solution; (ii) this approach seemlessly interconnects with the Energy-Based Models (EBMs) learning procedure enabling the use of well-tuned algorithms for the problem of interest; (iii) it provides an intuitive optimization scheme avoiding min-max, reinforce and other intricate technical tricks. For validation, we consider several low-dimensional scenarios and image-space setups, including non-Euclidean cost functions. Furthermore, we investigate the practical task of learning the barycenter on an image manifold generated by a pretrained generative model, opening up new directions for real-world applications.

Recently, a mask-based beamformer with attention-based spatial covariance matrix aggregator (ASA) was proposed, which was demonstrated to track moving sources accurately. However, the deep neural network model used in this algorithm is limited to a specific channel configuration, requiring a different model in case a different channel permutation, channel count, or microphone array geometry is considered. Addressing this limitation, in this paper, we investigate three approaches to improve the robustness of the ASA-based tracking method against such variations: incorporating random channel configurations during the training process, employing the transform-average-concatenate (TAC) method to process multi-channel input features (allowing for any channel count and enabling permutation invariance), and utilizing input features that are robust against variations of the channel configuration. Our experiments, conducted using the CHiME-3 and DEMAND datasets, demonstrate improved robustness against mismatches in channel permutations, channel counts, and microphone array geometries compared to the conventional ASA-based tracking method without compromising performance in matched conditions, suggesting that the mask-based beamformer with ASA integrating the proposed approaches has the potential to track moving sources for arbitrary microphone arrays.

We construct a randomized vector quantizer which has a smaller maximum error compared to all known lattice quantizers with the same entropy for dimensions 5, 6, ..., 48, and also has a smaller mean squared error compared to known lattice quantizers with the same entropy for dimensions 35, ..., 48, in the high resolution limit. Moreover, our randomized quantizer has a desirable property that the quantization error is always uniform over the ball and independent of the input. Our construction is based on applying rejection sampling on universal quantization, which allows us to shape the error distribution to be any continuous distribution, not only uniform distributions over basic cells of a lattice as in conventional dithered quantization. We also characterize the high SNR limit of one-shot channel simulation for any additive noise channel under a mild assumption (e.g., the AWGN channel), up to an additive constant of 1.45 bits.

Optimizing a set of functions simultaneously by leveraging their similarity is called multi-task optimization. Current black-box multi-task algorithms only solve a finite set of tasks, even when the tasks originate from a continuous space. In this paper, we introduce Parametric-task MAP-Elites (PT-ME), a novel black-box algorithm to solve continuous multi-task optimization problems. This algorithm (1) solves a new task at each iteration, effectively covering the continuous space, and (2) exploits a new variation operator based on local linear regression. The resulting dataset of solutions makes it possible to create a function that maps any task parameter to its optimal solution. We show on two parametric-task toy problems and a more realistic and challenging robotic problem in simulation that PT-ME outperforms all baselines, including the deep reinforcement learning algorithm PPO.

Due to strong capabilities in conducting fluent, multi-turn conversations with users, Large Language Models (LLMs) have the potential to further improve the performance of Conversational Recommender System (CRS). Unlike the aimless chit-chat that LLM excels at, CRS has a clear target. So it is imperative to control the dialogue flow in the LLM to successfully recommend appropriate items to the users. Furthermore, user feedback in CRS can assist the system in better modeling user preferences, which has been ignored by existing studies. However, simply prompting LLM to conduct conversational recommendation cannot address the above two key challenges. In this paper, we propose Multi-Agent Conversational Recommender System (MACRS) which contains two essential modules. First, we design a multi-agent act planning framework, which can control the dialogue flow based on four LLM-based agents. This cooperative multi-agent framework will generate various candidate responses based on different dialogue acts and then choose the most appropriate response as the system response, which can help MACRS plan suitable dialogue acts. Second, we propose a user feedback-aware reflection mechanism which leverages user feedback to reason errors made in previous turns to adjust the dialogue act planning, and higher-level user information from implicit semantics. We conduct extensive experiments based on user simulator to demonstrate the effectiveness of MACRS in recommendation and user preferences collection. Experimental results illustrate that MACRS demonstrates an improvement in user interaction experience compared to directly using LLMs.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

北京阿比特科技有限公司