The ability to read, interpret, and critique data visualizations has mainly been assessed using data visualization tasks like value retrieval. Although evidence on different facets of Visual Data Literacy (VDL) is well established in visualization research and includes numeracy, graph familiarity, or aesthetic elements, they have not been sufficiently considered in ability assessments. Here, VDL is considered a multidimensional ability whose facets can be partially self-assessed. We introduce an assessment in which VDL is deconstructed as a process of understanding, in reference to frameworks from the learning sciences. MAVIL, Multidimensional Assessment of Visual Data Literacy, is composed of six ability dimensions: General Impression/Abstract Thinking, Graph Elements/Familiarity, Aesthetic Perception, Visualization Criticism, Data Reading Tasks and Numeracy/Topic Knowledge. MAVIL was designed for general audiences and implemented in a survey (n=438), representative of Austria's age groups (18-74 years) and gender split. The survey mirrors the population's VDL and shows the perception of two climate data visualizations, a line and bar chart. We found that $48\%$ of respondents make mistakes with the simple charts, while $5\%$ believe that they cannot summarize the visualization content. About a quarter have deficits in comprehending simple data units, and $19-20\%$ are unfamiliar with each displayed chart type.
Visual illusions in humans arise when interpreting out-of-distribution stimuli: if the observer is adapted to certain statistics, perception of outliers deviates from reality. Recent studies have shown that artificial neural networks (ANNs) can also be deceived by visual illusions. This revelation raises profound questions about the nature of visual information. Why are two independent systems, both human brains and ANNs, susceptible to the same illusions? Should any ANN be capable of perceiving visual illusions? Are these perceptions a feature or a flaw? In this work, we study how visual illusions are encoded in diffusion models. Remarkably, we show that they present human-like brightness/color shifts in their latent space. We use this fact to demonstrate that diffusion models can predict visual illusions. Furthermore, we also show how to generate new unseen visual illusions in realistic images using text-to-image diffusion models. We validate this ability through psychophysical experiments that show how our model-generated illusions also fool humans.
Previous work finds that recent long-context language models fail to make equal use of information in the middle of their inputs, preferring pieces of information located at the tail ends which creates an undue bias in situations where we would like models to be equally capable of using different parts of the input. Thus far, the problem has mainly only been considered in settings with single pieces of critical information, leading us to question what happens when multiple necessary pieces of information are spread out over the inputs. Here, we demonstrate the effects of the "lost in the middle" problem in the multi-hop question answering setting -- in which multiple reasoning "hops" over disconnected documents are required -- and show that performance degrades not only with respect to the distance of information from the edges of the context, but also between pieces of information. Additionally, we experiment with means of alleviating the problem by reducing superfluous document contents through knowledge graph triple extraction and summarization, and prompting models to reason more thoroughly using chain-of-thought prompting.
Large language models (LLMs) have shown superior capabilities in translating figurative language compared to neural machine translation (NMT) systems. However, the impact of different prompting methods and LLM-NMT combinations on idiom translation has yet to be thoroughly investigated. This paper introduces two parallel datasets of sentences containing idiomatic expressions for Persian$\rightarrow$English and English$\rightarrow$Persian translations, with Persian idioms sampled from our PersianIdioms resource, a collection of 2,200 idioms and their meanings. Using these datasets, we evaluate various open- and closed-source LLMs, NMT models, and their combinations. Translation quality is assessed through idiom translation accuracy and fluency. We also find that automatic evaluation methods like LLM-as-a-judge, BLEU and BERTScore are effective for comparing different aspects of model performance. Our experiments reveal that Claude-3.5-Sonnet delivers outstanding results in both translation directions. For English$\rightarrow$Persian, combining weaker LLMs with Google Translate improves results, while Persian$\rightarrow$English translations benefit from single prompts for simpler models and complex prompts for advanced ones.
Powerful large language models (LLMs) are increasingly expected to be deployed with lower computational costs, enabling their capabilities on resource-constrained devices. Post-training quantization (PTQ) has emerged as a star approach to achieve this ambition, with best methods compressing weights to less than 2 bit on average. In this paper, we propose Channel-Relaxed Vector Quantization (CRVQ), a novel technique that significantly improves the performance of PTQ baselines at the cost of only minimal additional bits. This state-of-the-art extreme compression method achieves its results through two key innovations: (1) carefully selecting and reordering a very small subset of critical weight channels, and (2) leveraging multiple codebooks to relax the constraint of critical channels. With our method, we demonstrate a 38.9% improvement over the current strongest sub-2-bit PTQ baseline, enabling nearer lossless 1-bit compression. Furthermore, our approach offers flexible customization of quantization bit-width and performance, providing a wider range of deployment options for diverse hardware platforms.
Machine unlearning, the process of selectively removing data from trained models, is increasingly crucial for addressing privacy concerns and knowledge gaps post-deployment. Despite this importance, existing approaches are often heuristic and lack formal guarantees. In this paper, we analyze the fundamental utility, time, and space complexity trade-offs of approximate unlearning, providing rigorous certification analogous to differential privacy. For in-distribution forget data -- data similar to the retain set -- we show that a surprisingly simple and general procedure, empirical risk minimization with output perturbation, achieves tight unlearning-utility-complexity trade-offs, addressing a previous theoretical gap on the separation from unlearning "for free" via differential privacy, which inherently facilitates the removal of such data. However, such techniques fail with out-of-distribution forget data -- data significantly different from the retain set -- where unlearning time complexity can exceed that of retraining, even for a single sample. To address this, we propose a new robust and noisy gradient descent variant that provably amortizes unlearning time complexity without compromising utility.
Quantifying the similarity between datasets has widespread applications in statistics and machine learning. The performance of a predictive model on novel datasets, referred to as generalizability, depends on how similar the training and evaluation datasets are. Exploiting or transferring insights between similar datasets is a key aspect of meta-learning and transfer-learning. In simulation studies, the similarity between distributions of simulated datasets and real datasets, for which the performance of methods is assessed, is crucial. In two- or $k$-sample testing, it is checked, whether the underlying distributions of two or more datasets coincide. Extremely many approaches for quantifying dataset similarity have been proposed in the literature. We examine more than 100 methods and provide a taxonomy, classifying them into ten classes. In an extensive review of these methods the main underlying ideas, formal definitions, and important properties are introduced. We compare the 118 methods in terms of their applicability, interpretability, and theoretical properties, in order to provide recommendations for selecting an appropriate dataset similarity measure based on the specific goal of the dataset comparison and on the properties of the datasets at hand. An online tool facilitates the choice of the appropriate dataset similarity measure.
Cost-sensitive loss functions are crucial in many real-world prediction problems, where different types of errors are penalized differently; for example, in medical diagnosis, a false negative prediction can lead to worse consequences than a false positive prediction. However, traditional PAC learning theory has mostly focused on the symmetric 0-1 loss, leaving cost-sensitive losses largely unaddressed. In this work, we extend the celebrated theory of boosting to incorporate both cost-sensitive and multi-objective losses. Cost-sensitive losses assign costs to the entries of a confusion matrix, and are used to control the sum of prediction errors accounting for the cost of each error type. Multi-objective losses, on the other hand, simultaneously track multiple cost-sensitive losses, and are useful when the goal is to satisfy several criteria at once (e.g., minimizing false positives while keeping false negatives below a critical threshold). We develop a comprehensive theory of cost-sensitive and multi-objective boosting, providing a taxonomy of weak learning guarantees that distinguishes which guarantees are trivial (i.e., can always be achieved), which ones are boostable (i.e., imply strong learning), and which ones are intermediate, implying non-trivial yet not arbitrarily accurate learning. For binary classification, we establish a dichotomy: a weak learning guarantee is either trivial or boostable. In the multiclass setting, we describe a more intricate landscape of intermediate weak learning guarantees. Our characterization relies on a geometric interpretation of boosting, revealing a surprising equivalence between cost-sensitive and multi-objective losses.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.