亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomly initialized dense networks contain subnetworks that achieve high accuracy without weight learning -- strong lottery tickets (SLTs). Recently, Gadhikar et al. (2023) demonstrated that SLTs can also be found within a randomly pruned source network, thus reducing the SLT search space. However, this limits the search to SLTs that are even sparser than the source, leading to worse accuracy due to unintentionally high sparsity. This paper proposes a method that reduces the SLT search space by an arbitrary ratio independent of the desired SLT sparsity. A random subset of the initial weights is excluded from the search space by freezing it -- i.e., by either permanently pruning them or locking them as a fixed part of the SLT. In addition to reducing search space, the proposed random freezing can also provide the benefit of reducing the model size for inference. Furthermore, experimental results show that the proposed method finds SLTs with better accuracy-to-model size trade-off than the SLTs obtained from dense or randomly pruned source networks. In particular, the SLTs found in Frozen ResNets on image classification using ImageNet significantly improve the accuracy-to-search space and accuracy-to-model size trade-offs over SLTs within dense (non-freezing) or sparse (non-locking) random networks.

相關內容

Deep reinforcement learning (DRL) has achieved remarkable progress in online path planning tasks for multi-UAV systems. However, existing DRL-based methods often suffer from performance degradation when tackling unseen scenarios, since the non-causal factors in visual representations adversely affect policy learning. To address this issue, we propose a novel representation learning approach, \ie, causal representation disentanglement, which can identify the causal and non-causal factors in representations. After that, we only pass causal factors for subsequent policy learning and thus explicitly eliminate the influence of non-causal factors, which effectively improves the generalization ability of DRL models. Experimental results show that our proposed method can achieve robust navigation performance and effective collision avoidance especially in unseen scenarios, which significantly outperforms existing SOTA algorithms.

Multi-Instance Partial Label Learning (MI-PLL) is a weakly-supervised learning setting encompassing partial label learning, latent structural learning, and neurosymbolic learning. Differently from supervised learning, in MI-PLL, the inputs to the classifiers at training-time are tuples of instances $\textbf{x}$, while the supervision signal is generated by a function $\sigma$ over the gold labels of $\textbf{x}$. The gold labels are hidden during training. In this paper, we focus on characterizing and mitigating learning imbalances, i.e., differences in the errors occurring when classifying instances of different classes (aka class-specific risks), under MI-PLL. The phenomenon of learning imbalances has been extensively studied in the context of long-tail learning; however, the nature of MI-PLL introduces new challenges. Our contributions are as follows. From a theoretical perspective, we characterize the learning imbalances by deriving class-specific risk bounds that depend upon the function $\sigma$. Our theory reveals that learning imbalances exist in MI-PLL even when the hidden labels are uniformly distributed. On the practical side, we introduce a technique for estimating the marginal of the hidden labels using only MI-PLL data. Then, we introduce algorithms that mitigate imbalances at training- and testing-time, by treating the marginal of the hidden labels as a constraint. The first algorithm relies on a novel linear programming formulation of MI-PLL for pseudo-labeling. The second one adjusts a model's scores based on robust optimal transport. We demonstrate the effectiveness of our techniques using strong neurosymbolic and long-tail learning baselines, discussing also open challenges.

Many reaction-diffusion systems in various applications exhibit traveling wave solutions that evolve on multiple spatio-temporal scales. These traveling wave solutions are crucial for understanding the underlying dynamics of the system. In this work, we present sixth-order weighted essentially non-oscillatory (WENO) methods within the finite difference framework to solve reaction-diffusion systems. The WENO method allows us to use fewer grid points and larger time steps compared to classical finite difference methods. Our focus is on solving the reaction-diffusion system for the traveling wave solution with the sharp front. Although the WENO method is popular for hyperbolic conservation laws, especially for problems with discontinuity, it can be adapted for the equations of parabolic type, such as reaction-diffusion systems, to effectively handle sharp wave fronts. Thus, we employed the WENO methods specifically developed for equations of parabolic type. We considered various reaction-diffusion equations, including Fisher's, Zeldovich, Newell-Whitehead-Segel, bistable equations, and the Lotka-Volterra competition-diffusion system, all of which yield traveling wave solutions with sharp wave fronts. Numerical examples in this work demonstrate that the central WENO method is highly more accurate and efficient than the commonly used finite difference method. We also provide an analysis related to the numerical speed of the sharp propagating front in the Newell-Whitehead-Segel equation. The overall results confirm that the central WENO method is highly efficient and is recommended for solving reaction-diffusion equations with sharp wave fronts.

Distributed deep neural networks (DNNs) have emerged as a key technique to reduce communication overhead without sacrificing performance in edge computing systems. Recently, entropy coding has been introduced to further reduce the communication overhead. The key idea is to train the distributed DNN jointly with an entropy model, which is used as side information during inference time to adaptively encode latent representations into bit streams with variable length. To the best of our knowledge, the resilience of entropy models is yet to be investigated. As such, in this paper we formulate and investigate the resilience of entropy models to intentional interference (e.g., adversarial attacks) and unintentional interference (e.g., weather changes and motion blur). Through an extensive experimental campaign with 3 different DNN architectures, 2 entropy models and 4 rate-distortion trade-off factors, we demonstrate that the entropy attacks can increase the communication overhead by up to 95%. By separating compression features in frequency and spatial domain, we propose a new defense mechanism that can reduce the transmission overhead of the attacked input by about 9% compared to unperturbed data, with only about 2% accuracy loss. Importantly, the proposed defense mechanism is a standalone approach which can be applied in conjunction with approaches such as adversarial training to further improve robustness. Code will be shared for reproducibility.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

北京阿比特科技有限公司