Blumer et al. (1987, 1989) showed that any concept class that is learnable by Occam algorithms is PAC learnable. Board and Pitt (1990) showed a partial converse of this theorem: for concept classes that are closed under exception lists, any class that is PAC learnable is learnable by an Occam algorithm. However, their Occam algorithm outputs a hypothesis whose complexity is $\delta$-dependent, which is an important limitation. In this paper, we show that their partial converse applies to Occam algorithms with $\delta$-independent complexities as well. Thus, we provide a posteriori justification of various theoretical results and algorithm design methods which use the partial converse as a basis for their work.
Preference-based optimization algorithms are iterative procedures that seek the optimal calibration of a decision vector based only on comparisons between couples of different tunings. At each iteration, a human decision-maker expresses a preference between two calibrations (samples), highlighting which one, if any, is better than the other. The optimization procedure must use the observed preferences to find the tuning of the decision vector that is most preferred by the decision-maker, while also minimizing the number of comparisons. In this work, we formulate the preference-based optimization problem from a utility theory perspective. Then, we propose GLISp-r, an extension of a recent preference-based optimization procedure called GLISp. The latter uses a Radial Basis Function surrogate to describe the tastes of the decision-maker. Iteratively, GLISp proposes new samples to compare with the best calibration available by trading off exploitation of the surrogate model and exploration of the decision space. In GLISp-r, we propose a different criterion to use when looking for new candidate samples that is inspired by MSRS, a popular procedure in the black-box optimization framework. Compared to GLISp, GLISp-r is less likely to get stuck on local optima of the preference-based optimization problem. We motivate this claim theoretically, with a proof of global convergence, and empirically, by comparing the performances of GLISp and GLISp-r on several benchmark optimization problems.
Problems from metric graph theory such as Metric Dimension, Geodetic Set, and Strong Metric Dimension have recently had a strong impact on the field of parameterized complexity by being the first problems in NP to admit double-exponential lower bounds in the treewidth, and even in the vertex cover number for the latter. We initiate the study of enumerating minimal solution sets for these problems and show that they are also of great interest in enumeration. More specifically, we show that enumerating minimal resolving sets in graphs and minimal geodetic sets in split graphs are equivalent to hypergraph dualization, arguably one of the most important open problems in algorithmic enumeration. This provides two new natural examples to a question that emerged in different works this last decade: for which vertex (or edge) set graph property $\Pi$ is the enumeration of minimal (or maximal) subsets satisfying $\Pi$ equivalent to hypergraph dualization? As only very few properties are known to fit within this context -- namely, properties related to minimal domination -- our results make significant progress in characterizing such properties, and provide new angles of approach for tackling hypergraph dualization. In a second step, we consider cases where our reductions do not apply, namely graphs with no long induced paths, and show these cases to be mainly tractable.
We present a reduced basis stochastic Galerkin method for partial differential equations with random inputs. In this method, the reduced basis methodology is integrated into the stochastic Galerkin method, resulting in a significant reduction in the cost of solving the Galerkin system. To reduce the main cost of matrix-vector manipulation involved in our reduced basis stochastic Galerkin approach, the secant method is applied to identify the number of reduced basis functions. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.
We present an efficient preconditioner for linear problems $A x=y$. It guarantees monotonic convergence of the memory-efficient fixed-point iteration for all accretive systems of the form $A = L + V$, where $L$ is an approximation of $A$, and the system is scaled so that the discrepancy is bounded with $\lVert V \rVert<1$. In contrast to common splitting preconditioners, our approach is not restricted to any particular splitting. Therefore, the approximate problem can be chosen so that an analytic solution is available to efficiently evaluate the preconditioner. We prove that the only preconditioner with this property has the form $(L+I)(I - V)^{-1}$. This unique form moreover permits the elimination of the forward problem from the preconditioned system, often halving the time required per iteration. We demonstrate and evaluate our approach for wave problems, diffusion problems, and pantograph delay differential equations. With the latter we show how the method extends to general, not necessarily accretive, linear systems.
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed linear reaction-advection-diffusion (RAD) PDE models. We show that the differential algebra approach can always, in theory, be applied to linear RAD models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease structural identifiability. Finally, we show that our approach can also be applied to a class of non-linear PDE models that are linear in the unobserved variables, and conclude by discussing future possibilities and computational cost of performing structural identifiability analysis on more general PDE models in mathematical biology.
We consider the two-pronged fork frame $F$ and the variety $\mathbf{Eq}(B_F)$ generated by its dual closure algebra $B_F$. We describe the finite projective algebras in $\mathbf{Eq}(B_F)$ and give a purely semantic proof that unification in $\mathbf{Eq}(B_F)$ is finitary and not unitary.
The subpower membership problem SMP(A) of a finite algebraic structure A asks whether a given partial function from A^k to A can be interpolated by a term operation of A, or not. While this problem can be EXPTIME-complete in general, Willard asked whether it is always solvable in polynomial time if A is a Mal'tsev algebras. In particular, this includes many important structures studied in abstract algebra, such as groups, quasigroups, rings, Boolean algebras. In this paper we give an affirmative answer to Willard's question for a big class of 2-nilpotent Mal'tsev algebras. We furthermore develop tools that might be essential in answering the question for general nilpotent Mal'tsev algebras in the future.
Langevin dynamics are widely used in sampling high-dimensional, non-Gaussian distributions whose densities are known up to a normalizing constant. In particular, there is strong interest in unadjusted Langevin algorithms (ULA), which directly discretize Langevin dynamics to estimate expectations over the target distribution. We study the use of transport maps that approximately normalize a target distribution as a way to precondition and accelerate the convergence of Langevin dynamics. We show that in continuous time, when a transport map is applied to Langevin dynamics, the result is a Riemannian manifold Langevin dynamics (RMLD) with metric defined by the transport map. We also show that applying a transport map to an irreversibly-perturbed ULA results in a geometry-informed irreversible perturbation (GiIrr) of the original dynamics. These connections suggest more systematic ways of learning metrics and perturbations, and also yield alternative discretizations of the RMLD described by the map, which we study. Under appropriate conditions, these discretized processes can be endowed with non-asymptotic bounds describing convergence to the target distribution in 2-Wasserstein distance. Illustrative numerical results complement our theoretical claims.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.