亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Local news articles are a subset of news that impact users in a geographical area, such as a city, county, or state. Detecting local news (Step 1) and subsequently deciding its geographical location as well as radius of impact (Step 2) are two important steps towards accurate local news recommendation. Naive rule-based methods, such as detecting city names from the news title, tend to give erroneous results due to lack of understanding of the news content. Empowered by the latest development in natural language processing, we develop an integrated pipeline that enables automatic local news detection and content-based local news recommendations. In this paper, we focus on Step 1 of the pipeline, which highlights: (1) a weakly supervised framework incorporated with domain knowledge and auto data processing, and (2) scalability to multi-lingual settings. Compared with Stanford CoreNLP NER model, our pipeline has higher precision and recall evaluated on a real-world and human-labeled dataset. This pipeline has potential to more precise local news to users, helps local businesses get more exposure, and gives people more information about their neighborhood safety.

相關內容

While deep learning has achieved great success on various tasks, the task-specific model training notoriously relies on a large volume of labeled data. Recently, a new training paradigm of ``pre-train, prompt, predict'' has been proposed to improve model generalization ability with limited labeled data. The main idea is that, based on a pre-trained model, the prompting function uses a template to augment input samples with indicative context and reformalizes the target task to one of the pre-training tasks. In this survey, we provide a unique review of prompting methods from the graph perspective. Graph data has served as structured knowledge repositories in various systems by explicitly modeling the interaction between entities. Compared with traditional methods, graph prompting functions could induce task-related context and apply templates with structured knowledge. The pre-trained model is then adaptively generalized for future samples. In particular, we introduce the basic concepts of graph prompt learning, organize the existing work of designing graph prompting functions, and describe their applications and challenges to a variety of machine learning problems. This survey attempts to bridge the gap between structured graphs and prompt design to facilitate future methodology development.

The tremendous success of Stack Overflow has accumulated an extensive corpus of software engineering knowledge, thus motivating researchers to propose various solutions for analyzing its content.The performance of such solutions hinges significantly on the selection of representation model for Stack Overflow posts. As the volume of literature on Stack Overflow continues to burgeon, it highlights the need for a powerful Stack Overflow post representation model and drives researchers' interest in developing specialized representation models that can adeptly capture the intricacies of Stack Overflow posts. The state-of-the-art (SOTA) Stack Overflow post representation models are Post2Vec and BERTOverflow, which are built upon trendy neural networks such as convolutional neural network (CNN) and Transformer architecture (e.g., BERT). Despite their promising results, these representation methods have not been evaluated in the same experimental setting. To fill the research gap, we first empirically compare the performance of the representation models designed specifically for Stack Overflow posts (Post2Vec and BERTOverflow) in a wide range of related tasks, i.e., tag recommendation, relatedness prediction, and API recommendation. To find more suitable representation models for the posts, we further explore a diverse set of BERT-based models, including (1) general domain language models (RoBERTa and Longformer) and (2) language models built with software engineering-related textual artifacts (CodeBERT, GraphCodeBERT, and seBERT). However, it also illustrates the ``No Silver Bullet'' concept, as none of the models consistently wins against all the others. Inspired by the findings, we propose SOBERT, which employs a simple-yet-effective strategy to improve the best-performing model by continuing the pre-training phase with the textual artifact from Stack Overflow.

In recent years, hate speech has gained great relevance in social networks and other virtual media because of its intensity and its relationship with violent acts against members of protected groups. Due to the great amount of content generated by users, great effort has been made in the research and development of automatic tools to aid the analysis and moderation of this speech, at least in its most threatening forms. One of the limitations of current approaches to automatic hate speech detection is the lack of context. Most studies and resources are performed on data without context; that is, isolated messages without any type of conversational context or the topic being discussed. This restricts the available information to define if a post on a social network is hateful or not. In this work, we provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter. This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic. Classification experiments using state-of-the-art techniques show evidence that adding contextual information improves hate speech detection performance for two proposed tasks (binary and multi-label prediction). We make our code, models, and corpus available for further research.

Many adversarial attacks in NLP perturb inputs to produce visually similar strings ('ergo' $\rightarrow$ '$\epsilon$rgo') which are legible to humans but degrade model performance. Although preserving legibility is a necessary condition for text perturbation, little work has been done to systematically characterize it; instead, legibility is typically loosely enforced via intuitions around the nature and extent of perturbations. Particularly, it is unclear to what extent can inputs be perturbed while preserving legibility, or how to quantify the legibility of a perturbed string. In this work, we address this gap by learning models that predict the legibility of a perturbed string, and rank candidate perturbations based on their legibility. To do so, we collect and release LEGIT, a human-annotated dataset comprising the legibility of visually perturbed text. Using this dataset, we build both text- and vision-based models which achieve up to $0.91$ F1 score in predicting whether an input is legible, and an accuracy of $0.86$ in predicting which of two given perturbations is more legible. Additionally, we discover that legible perturbations from the LEGIT dataset are more effective at lowering the performance of NLP models than best-known attack strategies, suggesting that current models may be vulnerable to a broad range of perturbations beyond what is captured by existing visual attacks. Data, code, and models are available at //github.com/dvsth/learning-legibility-2023.

We suggest a novel procedure for online change point detection. Our approach expands an idea of maximizing a discrepancy measure between points from pre-change and post-change distributions. This leads to a flexible procedure suitable for both parametric and nonparametric scenarios. We prove non-asymptotic bounds on the average running length of the procedure and its expected detection delay. The efficiency of the algorithm is illustrated with numerical experiments on synthetic and real-world data sets.

Training object detection models usually requires instance-level annotations, such as the positions and labels of all objects present in each image. Such supervision is unfortunately not always available and, more often, only image-level information is provided, also known as weak supervision. Recent works have addressed this limitation by leveraging knowledge from a richly annotated domain. However, the scope of weak supervision supported by these approaches has been very restrictive, preventing them to use all available information. In this work, we propose ProbKT, a framework based on probabilistic logical reasoning that allows to train object detection models with arbitrary types of weak supervision. We empirically show on different datasets that using all available information is beneficial as our ProbKT leads to significant improvement on target domain and better generalization compared to existing baselines. We also showcase the ability of our approach to handle complex logic statements as supervision signal.

Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司