亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The pedestrian stress level is shown to significantly influence human cognitive processes and, subsequently, decision-making, e.g., the decision to select a gap and cross a street. This paper systematically studies the stress experienced by a pedestrian when crossing a street under different experimental manipulations by monitoring the ElectroDermal Activity (EDA) using the Galvanic Skin Response (GSR) sensor. To fulfil the research objectives, a dynamic and immersive virtual reality (VR) platform was used, which is suitable for eliciting and capturing pedestrian's emotional responses in conjunction with monitoring their EDA. A total of 171 individuals participated in the experiment, tasked to cross a two-way street at mid-block with no signal control. Mixed effects models were employed to compare the influence of socio-demographics, social influence, vehicle technology, environment, road design, and traffic variables on the stress levels of the participants. The results indicated that having a street median in the middle of the road operates as a refuge and significantly reduced stress. Younger participants were (18-24 years) calmer than the relatively older participants (55-65 years). Arousal levels were higher when it came to the characteristics of the avatar (virtual pedestrian) in the simulation, especially for those avatars with adventurous traits. The pedestrian location influenced stress since the stress was higher on the street while crossing than waiting on the sidewalk. Significant causes of arousal were fear of accidents and an actual accident for pedestrians. The estimated random effects show a high degree of physical and mental learning by the participants while going through the scenarios.

相關內容

電子設(she)(she)計自動(dong)化(hua)(英語:Electronic design automation,縮寫:EDA)是指利(li)用(yong)計算機輔助設(she)(she)計(CAD)軟件,來完成(cheng)超大規(gui)(gui)模集(ji)成(cheng)電路(VLSI)芯(xin)片的功(gong)能設(she)(she)計、綜合(he)、驗證、物理設(she)(she)計(包(bao)括(kuo)布(bu)局、布(bu)線、版圖、設(she)(she)計規(gui)(gui)則檢查等(deng)(deng))等(deng)(deng)流程的設(she)(she)計方式。

The two-alternative forced choice (2AFC) experimental method is popular in the visual perception literature, where practitioners aim to understand how human observers perceive distances within triplets made of a reference image and two distorted versions. In the past, this had been conducted in controlled environments, with triplets sharing images, so it was possible to rank the perceived quality. This ranking would then be used to evaluate perceptual distance models against the experimental data. Recently, crowd-sourced perceptual datasets have emerged, with no images shared between triplets, making ranking infeasible. Evaluating perceptual distance models using this data reduces the judgements on a triplet to a binary decision, namely, whether the distance model agrees with the human decision - which is suboptimal and prone to misleading conclusions. Instead, we statistically model the underlying decision-making process during 2AFC experiments using a binomial distribution. Having enough empirical data, we estimate a smooth and consistent distribution of the judgements on the reference-distorted distance plane, according to each distance model. By applying maximum likelihood, we estimate the parameter of the local binomial distribution, and a global measurement of the expected log-likelihood of the measured responses. We calculate meaningful and well-founded metrics for the distance model, beyond the mere prediction accuracy as percentage agreement, even with variable numbers of judgements per triplet -- key advantages over both classical and neural network methods.

The growing interest in human-robot collaboration (HRC), where humans and robots cooperate towards shared goals, has seen significant advancements over the past decade. While previous research has addressed various challenges, several key issues remain unresolved. Many domains within HRC involve activities that do not necessarily require human presence throughout the entire task. Existing literature typically models HRC as a closed system, where all agents are present for the entire duration of the task. In contrast, an open model offers flexibility by allowing an agent to enter and exit the collaboration as needed, enabling them to concurrently manage other tasks. In this paper, we introduce a novel multiagent framework called oDec-MDP, designed specifically to model open HRC scenarios where agents can join or leave tasks flexibly during execution. We generalize a recent multiagent inverse reinforcement learning method - Dec-AIRL to learn from open systems modeled using the oDec-MDP. Our method is validated through experiments conducted in both a simplified toy firefighting domain and a realistic dyadic human-robot collaborative assembly. Results show that our framework and learning method improves upon its closed system counterpart.

Seeking high-quality representations with latent variable models (LVMs) to reveal the intrinsic correlation between neural activity and behavior or sensory stimuli has attracted much interest. Most work has focused on analyzing motor neural activity that controls clear behavioral traces and has modeled neural temporal relationships in a way that does not conform to natural reality. For studies of visual brain regions, naturalistic visual stimuli are high-dimensional and time-dependent, making neural activity exhibit intricate dynamics. To cope with such conditions, we propose Time-Dependent Split VAE (TiDeSPL-VAE), a sequential LVM that decomposes visual neural activity into two latent representations while considering time dependence. We specify content latent representations corresponding to the component of neural activity driven by the current visual stimulus, and style latent representations corresponding to the neural dynamics influenced by the organism's internal state. To progressively generate the two latent representations over time, we introduce state factors to construct conditional distributions with time dependence and apply self-supervised contrastive learning to shape them. By this means, TiDeSPL-VAE can effectively analyze complex visual neural activity and model temporal relationships in a natural way. We compare our model with alternative approaches on synthetic data and neural data from the mouse visual cortex. The results show that our model not only yields the best decoding performance on naturalistic scenes/movies but also extracts explicit neural dynamics, demonstrating that it builds latent representations more relevant to visual stimuli.

Causal models seek to unravel the cause-effect relationships among variables from observed data, as opposed to mere mappings among them, as traditional regression models do. This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships. In such scenarios, the causal links represented by directed acyclic graphs (DAGs) can be encapsulated in a structural matrix. The proposed approach leverages the structural matrix's ability to reconstruct data and the statistical properties it imposes on the data to identify the correct structural matrix. This method does not rely on independence tests or graph fitting procedures, making it suitable for scenarios with limited training data. Simulation results demonstrate that the proposed method outperforms the well-known PC, GES, BIC exact search, and LINGAM-based methods in recovering linearly sparse causal structures.

Recurrent neural networks (RNNs) hold immense potential for computations due to their Turing completeness and sequential processing capabilities, yet existing methods for their training encounter efficiency challenges. Backpropagation through time (BPTT), the prevailing method, extends the backpropagation (BP) algorithm by unrolling the RNN over time. However, this approach suffers from significant drawbacks, including the need to interleave forward and backward phases and store exact gradient information. Furthermore, BPTT has been shown to struggle to propagate gradient information for long sequences, leading to vanishing gradients. An alternative strategy to using gradient-based methods like BPTT involves stochastically approximating gradients through perturbation-based methods. This learning approach is exceptionally simple, necessitating only forward passes in the network and a global reinforcement signal as feedback. Despite its simplicity, the random nature of its updates typically leads to inefficient optimization, limiting its effectiveness in training neural networks. In this study, we present a new approach to perturbation-based learning in RNNs whose performance is competitive with BPTT, while maintaining the inherent advantages over gradient-based learning. To this end, we extend the recently introduced activity-based node perturbation (ANP) method to operate in the time domain, leading to more efficient learning and generalization. We subsequently conduct a range of experiments to validate our approach. Our results show similar performance, convergence time and scalability compared to BPTT, strongly outperforming standard node and weight perturbation methods. These findings suggest that perturbation-based learning methods offer a versatile alternative to gradient-based methods for training RNNs which can be ideally suited for neuromorphic computing applications

Models driven by spurious correlations often yield poor generalization performance. We propose the counterfactual (CF) alignment method to detect and quantify spurious correlations of black box classifiers. Our methodology is based on counterfactual images generated with respect to one classifier being input into other classifiers to see if they also induce changes in the outputs of these classifiers. The relationship between these responses can be quantified and used to identify specific instances where a spurious correlation exists. This is validated by observing intuitive trends in a face-attribute face-attribute and waterbird classifiers, as well as by fabricating spurious correlations and detecting their presence, both visually and quantitatively. Furthermore, utilizing the CF alignment method, we demonstrate that we can evaluate robust optimization methods (GroupDRO, JTT, and FLAC) by detecting a reduction in spurious correlations.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司