亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Increasingly, information systems rely on computational, storage, and network resources deployed in third-party facilities such as cloud centers and edge nodes. Such an approach further exacerbates cybersecurity concerns constantly raised by numerous incidents of security and privacy attacks resulting in data leakage and identity theft, among others. These have, in turn, forced the creation of stricter security and privacy-related regulations and have eroded the trust in cyberspace. In particular, security-related services and infrastructures, such as Certificate Authorities (CAs) that provide digital certificate services and Third-Party Authorities (TPAs) that provide cryptographic key services, are critical components for establishing trust in crypto-based privacy-preserving applications and services. To address such trust issues, various transparency frameworks and approaches have been recently proposed in the literature. This paper proposes TAB framework that provides transparency and trustworthiness of third-party authority and third-party facilities using blockchain techniques for emerging crypto-based privacy-preserving applications. TAB employs the Ethereum blockchain as the underlying public ledger and also includes a novel smart contract to automate accountability with an incentive mechanism that motivates users to participate in auditing, and punishes unintentional or malicious behaviors. We implement TAB and show through experimental evaluation in the Ethereum official test network, Rinkeby, that the framework is efficient. We also formally show the security guarantee provided by TAB, and analyze the privacy guarantee and trustworthiness it provides.

相關內容

The extensive adoption of business analytics (BA) has brought financial gains and increased efficiencies. However, these advances have simultaneously drawn attention to rising legal and ethical challenges when BA inform decisions with fairness implications. As a response to these concerns, the emerging study of algorithmic fairness deals with algorithmic outputs that may result in disparate outcomes or other forms of injustices for subgroups of the population, especially those who have been historically marginalized. Fairness is relevant on the basis of legal compliance, social responsibility, and utility; if not adequately and systematically addressed, unfair BA systems may lead to societal harms and may also threaten an organization's own survival, its competitiveness, and overall performance. This paper offers a forward-looking, BA-focused review of algorithmic fairness. We first review the state-of-the-art research on sources and measures of bias, as well as bias mitigation algorithms. We then provide a detailed discussion of the utility-fairness relationship, emphasizing that the frequent assumption of a trade-off between these two constructs is often mistaken or short-sighted. Finally, we chart a path forward by identifying opportunities for business scholars to address impactful, open challenges that are key to the effective and responsible deployment of BA.

Graph Machine Learning (GraphML), whereby classical machine learning is generalized to irregular graph domains, has enjoyed a recent renaissance, leading to a dizzying array of models and their applications in several domains. With its growing applicability to sensitive domains and regulations by government agencies for trustworthy AI systems, researchers have started looking into the issues of transparency and privacy of graph learning. However, these topics have been mainly investigated independently. In this position paper, we provide a unified perspective on the interplay of privacy and transparency in GraphML.

The Heuristic Rating Estimation Method enables decision-makers to decide based on existing ranking data and expert comparisons. In this approach, the ranking values of selected alternatives are known in advance, while these values have to be calculated for the remaining ones. Their calculation can be performed using either an additive or a multiplicative method. Both methods assumed that the pairwise comparison sets involved in the computation were complete. In this paper, we show how these algorithms can be extended so that the experts do not need to compare all alternatives pairwise. Thanks to the shortening of the work of experts, the presented, improved methods will reduce the costs of the decision-making procedure and facilitate and shorten the stage of collecting decision-making data.

Predictive machine learning models nowadays are often updated in a stateless and expensive way. The two main future trends for companies that want to build machine learning-based applications and systems are real-time inference and continual updating. Unfortunately, both trends require a mature infrastructure that is hard and costly to realize on-premise. This paper defines a novel software service and model delivery infrastructure termed Continual Learning-as-a-Service (CLaaS) to address these issues. Specifically, it embraces continual machine learning and continuous integration techniques. It provides support for model updating and validation tools for data scientists without an on-premise solution and in an efficient, stateful and easy-to-use manner. Finally, this CL model service is easy to encapsulate in any machine learning infrastructure or cloud system. This paper presents the design and implementation of a CLaaS instantiation, called LiquidBrain, evaluated in two real-world scenarios. The former is a robotic object recognition setting using the CORe50 dataset while the latter is a named category and attribute prediction using the DeepFashion-C dataset in the fashion domain. Our preliminary results suggest the usability and efficiency of the Continual Learning model services and the effectiveness of the solution in addressing real-world use-cases regardless of where the computation happens in the continuum Edge-Cloud.

Recent studies have shown that deep neural networks-based recommender systems are vulnerable to adversarial attacks, where attackers can inject carefully crafted fake user profiles (i.e., a set of items that fake users have interacted with) into a target recommender system to achieve malicious purposes, such as promote or demote a set of target items. Due to the security and privacy concerns, it is more practical to perform adversarial attacks under the black-box setting, where the architecture/parameters and training data of target systems cannot be easily accessed by attackers. However, generating high-quality fake user profiles under black-box setting is rather challenging with limited resources to target systems. To address this challenge, in this work, we introduce a novel strategy by leveraging items' attribute information (i.e., items' knowledge graph), which can be publicly accessible and provide rich auxiliary knowledge to enhance the generation of fake user profiles. More specifically, we propose a knowledge graph-enhanced black-box attacking framework (KGAttack) to effectively learn attacking policies through deep reinforcement learning techniques, in which knowledge graph is seamlessly integrated into hierarchical policy networks to generate fake user profiles for performing adversarial black-box attacks. Comprehensive experiments on various real-world datasets demonstrate the effectiveness of the proposed attacking framework under the black-box setting.

Knowledge graphs have emerged as an effective tool for managing and standardizing semistructured domain knowledge in a human- and machine-interpretable way. In terms of graph-based domain applications, such as embeddings and graph neural networks, current research is increasingly taking into account the time-related evolution of the information encoded within a graph. Algorithms and models for stationary and static knowledge graphs are extended to make them accessible for time-aware domains, where time-awareness can be interpreted in different ways. In particular, a distinction needs to be made between the validity period and the traceability of facts as objectives of time-related knowledge graph extensions. In this context, terms and definitions such as dynamic and temporal are often used inconsistently or interchangeably in the literature. Therefore, with this paper we aim to provide a short but well-defined overview of time-aware knowledge graph extensions and thus faciliate future research in this field as well.

The user persona is a communication tool for designers to generate a mental model that describes the archetype of users. Developing building occupant personas is proven to be an effective method for human-centered smart building design, which considers occupant comfort, behavior, and energy consumption. Optimization of building energy consumption also requires a deep understanding of occupants' preferences and behaviors. The current approaches to developing building occupant personas face a major obstruction of manual data processing and analysis. In this study, we propose and evaluate a machine learning-based semi-automated approach to generate building occupant personas. We investigate the 2015 Residential Energy Consumption Dataset with five machine learning techniques - Linear Discriminant Analysis, K Nearest Neighbors, Decision Tree (Random Forest), Support Vector Machine, and AdaBoost classifier - for the prediction of 16 occupant characteristics, such as age, education, and, thermal comfort. The models achieve an average accuracy of 61% and accuracy over 90% for attributes including the number of occupants in the household, their age group, and preferred usage of heating or cooling equipment. The results of the study show the feasibility of using machine learning techniques for the development of building occupant persona to minimize human effort.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司