Supply chain optimization is key to a healthy and profitable business. Many companies use online procurement systems to agree contracts with suppliers. It is vital that the most competitive suppliers are invited to bid for such contracts. In this work, we propose a recommender system to assist with supplier discovery in road freight online procurement. Our system is able to provide personalized supplier recommendations, taking into account customer needs and preferences. This is a novel application of recommender systems, calling for design choices that fit the unique requirements of online procurement. Our preliminary results, using real-world data, are promising.
Drawing a graph in the plane with as few crossings as possible is one of the central problems in graph drawing and computational geometry. Another option is to remove the smallest number of vertices or edges such that the remaining graph can be drawn without crossings. We study both problems in a book-embedding setting for ordered graphs, that is, graphs with a fixed vertex order. In this setting, the vertices lie on a straight line, called the spine, in the given order, and each edge must be drawn on one of several pages of a book such that every edge has at most a fixed number of crossings. In book embeddings, there is another way to reduce or avoid crossings; namely by using more pages. The minimum number of pages needed to draw an ordered graph without any crossings is its (fixed-vertex-order) page number. We show that the page number of an ordered graph with $n$ vertices and $m$ edges can be computed in $2^m \cdot n^{O(1)}$ time. An $O(\log n)$-approximation of this number can be computed efficiently. We can decide in $2^{O(d \sqrt{k} \log (d+k))} \cdot n^{O(1)}$ time whether it suffices to delete $k$ edges of an ordered graph to obtain a $d$-planar layout (where every edge crosses at most $d$ other edges) on one page. As an additional parameter, we consider the size $h$ of a hitting set, that is, a set of points on the spine such that every edge, seen as an open interval, contains at least one of the points. For $h=1$, we can efficiently compute the minimum number of edges whose deletion yields fixed-vertex-order page number $p$. For $h>1$, we give an XP algorithm with respect to $h+p$. Finally, we consider spine+$t$-track drawings, where some but not all vertices lie on the spine. The vertex order on the spine is given; we must map every vertex that does not lie on the spine to one of $t$ tracks, each of which is a straight line on a separate page, parallel to the spine.
In credence goods markets such as health care or repair services, consumers rely on experts with superior information to adequately diagnose and treat them. Experts, however, are constrained in their diagnostic abilities, which hurts market efficiency and consumer welfare. Technological breakthroughs that substitute or complement expert judgments have the potential to alleviate consumer mistreatment. This article studies how competitive experts adopt novel diagnostic technologies when skills are heterogeneously distributed and obfuscated to consumers. We differentiate between novel technologies that increase expert abilities, and algorithmic decision aids that complement expert judgments, but do not affect an expert's personal diagnostic precision. We show that high-ability experts may be incentivized to forego the decision aid in order to escape a pooling equilibrium by differentiating themselves from low-ability experts. Results from an online experiment support our hypothesis, showing that high-ability experts are significantly less likely than low-ability experts to invest into an algorithmic decision aid. Furthermore, we document pervasive under-investments, and no effect on expert honesty.
We consider a Multi-Agent Path Finding (MAPF) setting where agents have been assigned a plan, but during its execution some agents are delayed. Instead of replanning from scratch when such a delay occurs, we propose delay introduction, whereby we delay some additional agents so that the remainder of the plan can be executed safely. We show that finding the minimum number of additional delays is APX-Hard, i.e., it is NP-Hard to find a $(1+\varepsilon)$-approximation for some $\varepsilon>0$. However, in practice we can find optimal delay-introductions using Conflict-Based Search for very large numbers of agents, and both planning time and the resulting length of the plan are comparable, and sometimes outperform the state-of-the-art heuristics for replanning.
Survey sampling theory and methods are introduced. Sampling designs and estimation methods are carefully discussed as a textbook for survey sampling. Topics includes Horvitz-Thompson estimation, simple random sampling, stratified sampling, cluster sampling, ratio estimation, regression estimation, variance estimation, two-phase sampling, and nonresponse adjustment methods.
Radar odometry estimation has emerged as a critical technique in the field of autonomous navigation, providing robust and reliable motion estimation under various environmental conditions. Despite its potential, the complex nature of radar signals and the inherent challenges associated with processing these signals have limited the widespread adoption of this technology. This paper aims to address these challenges by proposing novel improvements to an existing method for radar odometry estimation, designed to enhance accuracy and reliability in diverse scenarios. Our pipeline consists of filtering, motion compensation, oriented surface points computation, smoothing, one-to-many radar scan registration, and pose refinement. The developed method enforces local understanding of the scene, by adding additional information through smoothing techniques, and alignment of consecutive scans, as a refinement posterior to the one-to-many registration. We present an in-depth investigation of the contribution of each improvement to the localization accuracy, and we benchmark our system on the sequences of the main datasets for radar understanding, i.e., the Oxford Radar RobotCar, MulRan, and Boreas datasets. The proposed pipeline is able to achieve superior results, on all scenarios considered and under harsh environmental constraints.
The brain is targeted for processing temporal sequence information. It remains largely unclear how the brain learns to store and retrieve sequence memories. Here, we study how recurrent networks of binary neurons learn sequence attractors to store predefined pattern sequences and retrieve them robustly. We show that to store arbitrary pattern sequences, it is necessary for the network to include hidden neurons even though their role in displaying sequence memories is indirect. We develop a local learning algorithm to learn sequence attractors in the networks with hidden neurons. The algorithm is proven to converge and lead to sequence attractors. We demonstrate that the network model can store and retrieve sequences robustly on synthetic and real-world datasets. We hope that this study provides new insights in understanding sequence memory and temporal information processing in the brain.
Effective conversation requires common ground: a shared understanding between the participants. Common ground, however, does not emerge spontaneously in conversation. Speakers and listeners work together to both identify and construct a shared basis while avoiding misunderstanding. To accomplish grounding, humans rely on a range of dialogue acts, like clarification (What do you mean?) and acknowledgment (I understand.). However, it is unclear whether large language models (LLMs) generate text that reflects human grounding. To this end, we curate a set of grounding acts and propose corresponding metrics that quantify attempted grounding. We study whether LLM generations contain grounding acts, simulating turn-taking from several dialogue datasets and comparing results to humans. We find that -- compared to humans -- LLMs generate language with less conversational grounding, instead generating text that appears to simply presume common ground. To understand the roots of the identified grounding gap, we examine the role of instruction tuning and preference optimization, finding that training on contemporary preference data leads to a reduction in generated grounding acts. Altogether, we highlight the need for more research investigating conversational grounding in human-AI interaction.
While policy-based reinforcement learning (RL) achieves tremendous successes in practice, it is significantly less understood in theory, especially compared with value-based RL. In particular, it remains elusive how to design a provably efficient policy optimization algorithm that incorporates exploration. To bridge such a gap, this paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO), which follows an ``optimistic version'' of the policy gradient direction. This paper proves that, in the problem of episodic Markov decision process with linear function approximation, unknown transition, and adversarial reward with full-information feedback, OPPO achieves $\tilde{O}(\sqrt{d^2 H^3 T} )$ regret. Here $d$ is the feature dimension, $H$ is the episode horizon, and $T$ is the total number of steps. To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.