Variational integrators for Euler--Lagrange equations and Hamilton's equations are a class of structure-preserving numerical methods that respect the conservative properties of such systems. Lie group variational integrators are a particular class of these integrators that apply to systems which evolve over the tangent bundle and cotangent bundle of Lie groups. Traditionally, these are constructed from a variational principle which assumes fixed position endpoints. In this paper, we instead construct Lie group variational integrators with a novel Type II variational principle on the cotangent bundle of a Lie group which allows for Type II boundary conditions, i.e., fixed initial position and final momenta; these boundary conditions are particularly important for adjoint sensitivity analysis, which is the motivating application in our paper. In general, such Type II variational principles are only globally defined on vector spaces or locally defined on general manifolds; however, by left translation, we are able to define this variational principle globally on cotangent bundles of Lie groups. By developing the continuous and discrete Type II variational principles over Lie groups, we construct a structure-preserving Lie group variational integrator that is both symplectic and momentum-preserving. Subsequently, we introduce adjoint systems on Lie groups, and show how these adjoint systems can be used to perform geometric adjoint sensitivity analysis for optimization problems on Lie groups. Finally, we conclude with two numerical examples to show how adjoint sensitivity analysis can be used to solve initial-value optimization problems and optimal control problems on Lie groups.
We present a high order immersed finite element (IFE) method for solving the elliptic interface problem with interface-independent meshes. The IFE functions developed here satisfy the interface conditions exactly and they have optimal approximation capabilities. The construction of this novel IFE space relies on a nonlinear transformation based on the Frenet-Serret frame of the interface to locally map it into a line segment, and this feature makes the process of constructing the IFE functions cost-effective and robust for any degree. This new class of immersed finite element functions is locally conforming with the usual weak form of the interface problem so that they can be employed in the standard interior penalty discontinuous Galerkin scheme without additional penalties on the interface. Numerical examples are provided to showcase the convergence properties of the method under $h$ and $p$ refinements.
Optimal transport is a fundamental topic that has attracted a great amount of attention from the optimization community in the past decades. In this paper, we consider an interesting discrete dynamic optimal transport problem: can we efficiently update the optimal transport plan when the weights or the locations of the data points change? This problem is naturally motivated by several applications in machine learning. For example, we often need to compute the optimal transport cost between two different data sets; if some changes happen to a few data points, should we re-compute the high complexity cost function or update the cost by some efficient dynamic data structure? We are aware that several dynamic maximum flow algorithms have been proposed before, however, the research on dynamic minimum cost flow problem is still quite limited, to the best of our knowledge. We propose a novel 2D Skip Orthogonal List together with some dynamic tree techniques. Although our algorithm is based on the conventional simplex method, it can efficiently find the variable to pivot within expected $O(1)$ time, and complete each pivoting operation within expected $O(|V|)$ time where $V$ is the set of all supply and demand nodes. Since dynamic modifications typically do not introduce significant changes, our algorithm requires only a few simplex iterations in practice. So our algorithm is more efficient than re-computing the optimal transport cost that needs at least one traversal over all $|E| = O(|V|^2)$ variables, where $|E|$ denotes the number of edges in the network. Our experiments demonstrate that our algorithm significantly outperforms existing algorithms in the dynamic scenarios.
In recent years, considerable attention has been devoted to the regularization models due to the presence of high-dimensional data in scientific research. Sparse support vector machine (SVM) are useful tools in high-dimensional data analysis, and they have been widely used in the area of econometrics. Nevertheless, the non-smoothness of objective functions and constraints present computational challenges for many existing solvers in the presence of ultra-high dimensional covariates. In this paper, we design efficient and parallelizable algorithms for solving sparse SVM problems with high dimensional data through feature space split. The proposed algorithm is based on the alternating direction method of multiplier (ADMM). We establish the rate of convergence of the proposed ADMM method and compare it with existing solvers in various high and ultra-high dimensional settings. The compatibility of the proposed algorithm with parallel computing can further alleviate the storage and scalability limitations of a single machine in large-scale data processing.
Many of the most fundamental laws of nature can be formulated as partial differential equations (PDEs). Understanding these equations is, therefore, of exceptional importance for many branches of modern science and engineering. However, since the general solution of many PDEs is unknown, the efficient approximate solution of these equations is one of humanity's greatest challenges. While multigrid represents one of the most effective methods for solving PDEs numerically, in many cases, the design of an efficient or at least working multigrid solver is an open problem. This thesis demonstrates that grammar-guided genetic programming, an evolutionary program synthesis technique, can discover multigrid methods of unprecedented structure that achieve a high degree of efficiency and generalization. For this purpose, we develop a novel context-free grammar that enables the automated generation of multigrid methods in a symbolically-manipulable formal language, based on which we can apply the same multigrid-based solver to problems of different sizes without having to adapt its internal structure. Treating the automated design of an efficient multigrid method as a program synthesis task allows us to find novel sequences of multigrid operations, including the combination of different smoothing and coarse-grid correction steps on each level of the discretization hierarchy. To prove the feasibility of this approach, we present its implementation in the form of the Python framework EvoStencils, which is freely available as open-source software. This implementation comprises all steps from representing the algorithmic sequence of a multigrid method in the form of a directed acyclic graph of Python objects to its automatic generation and optimization using the capabilities of the code generation framework ExaStencils and the evolutionary computation library DEAP.
An information-theoretic confidential communication is achievable if the eavesdropper has a degraded channel compared to the legitimate receiver. In wireless channels, beamforming and artificial noise can enable such confidentiality. However, only distribution knowledge of the eavesdropper channels can be assumed. Moreover, the transmission of artificial noise can lead to an increased electromagnetic field (EMF) exposure, which depends on the considered location and can thus also be seen as a random variable. Hence, we optimize the $\varepsilon$-outage secrecy rate under a $\delta$-outage exposure constraint in a setup, where the base station (BS) is communicating to a user equipment (UE), while a single-antenna eavesdropper with Rayleigh distributed channels is present. Therefore, we calculate the secrecy outage probability (SOP) in closed-form. Based on this, we convexify the optimization problem and optimize the $\varepsilon$-outage secrecy rate iteratively. Numerical results show that for a moderate exposure constraint, artificial noise from the BS has a relatively large impact due to beamforming, while for a strict exposure constraint artificial noise from the UE is more important.
Operator learning aims to discover properties of an underlying dynamical system or partial differential equation (PDE) from data. Here, we present a step-by-step guide to operator learning. We explain the types of problems and PDEs amenable to operator learning, discuss various neural network architectures, and explain how to employ numerical PDE solvers effectively. We also give advice on how to create and manage training data and conduct optimization. We offer intuition behind the various neural network architectures employed in operator learning by motivating them from the point-of-view of numerical linear algebra.
Physics-Informed Neural Networks (PINNs) have proven effective in solving partial differential equations (PDEs), especially when some data are available by blending seamlessly data and physics. However, extending PINNs to high-dimensional and even high-order PDEs encounters significant challenges due to the computational cost associated with automatic differentiation in the residual loss. Herein, we address the limitations of PINNs in handling high-dimensional and high-order PDEs by introducing Hutchinson Trace Estimation (HTE). Starting with the second-order high-dimensional PDEs ubiquitous in scientific computing, HTE transforms the calculation of the entire Hessian matrix into a Hessian vector product (HVP). This approach alleviates the computational bottleneck via Taylor-mode automatic differentiation and significantly reduces memory consumption from the Hessian matrix to HVP. We further showcase HTE's convergence to the original PINN loss and its unbiased behavior under specific conditions. Comparisons with Stochastic Dimension Gradient Descent (SDGD) highlight the distinct advantages of HTE, particularly in scenarios with significant variance among dimensions. We further extend HTE to higher-order and higher-dimensional PDEs, specifically addressing the biharmonic equation. By employing tensor-vector products (TVP), HTE efficiently computes the colossal tensor associated with the fourth-order high-dimensional biharmonic equation, saving memory and enabling rapid computation. The effectiveness of HTE is illustrated through experimental setups, demonstrating comparable convergence rates with SDGD under memory and speed constraints. Additionally, HTE proves valuable in accelerating the Gradient-Enhanced PINN (gPINN) version as well as the Biharmonic equation. Overall, HTE opens up a new capability in scientific machine learning for tackling high-order and high-dimensional PDEs.
The simulation of plasma physics is computationally expensive because the underlying physical system is of high dimensions, requiring three spatial dimensions and three velocity dimensions. One popular numerical approach is Particle-In-Cell (PIC) methods owing to its ease of implementation and favorable scalability in high-dimensional problems. An unfortunate drawback of the method is the introduction of statistical noise resulting from the use of finitely many particles. In this paper we examine the application of the Smoothness-Increasing Accuracy-Conserving (SIAC) family of convolution kernel filters as denoisers for moment data arising from PIC simulations. We show that SIAC filtering is a promising tool to denoise PIC data in the physical space as well as capture the appropriate scales in the Fourier space. Furthermore, we demonstrate how the application of the SIAC technique reduces the amount of information necessary in the computation of quantities of interest in plasma physics such as the Bohm speed.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.