亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The vast amounts of data collected in various domains pose great challenges to modern data exploration and analysis. To find "interesting" objects in large databases, users typically define a query using positive and negative example objects and train a classification model to identify the objects of interest in the entire data catalog. However, this approach requires a scan of all the data to apply the classification model to each instance in the data catalog, making this method prohibitively expensive to be employed in large-scale databases serving many users and queries interactively. In this work, we propose a novel framework for such search-by-classification scenarios that allows users to interactively search for target objects by specifying queries through a small set of positive and negative examples. Unlike previous approaches, our framework can rapidly answer such queries at low cost without scanning the entire database. Our framework is based on an index-aware construction scheme for decision trees and random forests that transforms the inference phase of these classification models into a set of range queries, which in turn can be efficiently executed by leveraging multidimensional indexing structures. Our experiments show that queries over large data catalogs with hundreds of millions of objects can be processed in a few seconds using a single server, compared to hours needed by classical scanning-based approaches.

相關內容

指的是利用多棵樹對樣本進行訓練并預測的一種分類器。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Channel charting is a self-supervised learning technique whose objective is to reconstruct a map of the radio environment, called channel chart, by taking advantage of similarity relationships in high-dimensional channel state information. We provide an overview of processing steps and evaluation methods for channel charting and propose a novel dissimilarity metric that takes into account angular-domain information as well as a novel deep learning-based metric. Furthermore, we suggest a method to fuse dissimilarity metrics such that both the time at which channels were measured as well as similarities in channel state information can be taken into consideration while learning a channel chart. By applying both classical and deep learning-based manifold learning to a dataset containing sub-6GHz distributed massive MIMO channel measurements, we show that our metrics outperform previously proposed dissimilarity measures. The results indicate that the new metrics improve channel charting performance, even under non-line-of-sight conditions.

Image completion techniques have made significant progress in filling missing regions (i.e., holes) in images. However, large-hole completion remains challenging due to limited structural information. In this paper, we address this problem by integrating explicit structural guidance into diffusion-based image completion, forming our structure-guided diffusion model (SGDM). It consists of two cascaded diffusion probabilistic models: structure and texture generators. The structure generator generates an edge image representing plausible structures within the holes, which is then used for guiding the texture generation process. To train both generators jointly, we devise a novel strategy that leverages optimal Bayesian denoising, which denoises the output of the structure generator in a single step and thus allows backpropagation. Our diffusion-based approach enables a diversity of plausible completions, while the editable edges allow for editing parts of an image. Our experiments on natural scene (Places) and face (CelebA-HQ) datasets demonstrate that our method achieves a superior or comparable visual quality compared to state-of-the-art approaches. The code is available for research purposes at //github.com/UdonDa/Structure_Guided_Diffusion_Model.

We study the role of information and access in capacity-constrained selection problems with fairness concerns. We develop a theoretical statistical discrimination framework, where each applicant has multiple features and is potentially strategic. The model formalizes the trade-off between the (potentially positive) informational role of a feature and its (negative) exclusionary nature when members of different social groups have unequal access to this feature. Our framework finds a natural application to recent policy debates on dropping standardized testing in college admissions. Our primary takeaway is that the decision to drop a feature (such as test scores) cannot be made without the joint context of the information provided by other features and how the requirement affects the applicant pool composition. Dropping a feature may exacerbate disparities by decreasing the amount of information available for each applicant, especially those from non-traditional backgrounds. However, in the presence of access barriers to a feature, the interaction between the informational environment and the effect of access barriers on the applicant pool size becomes highly complex. In this case, we provide a threshold characterization regarding when removing a feature improves both academic merit and diversity. Finally, using calibrated simulations in both the strategic and non-strategic settings, we demonstrate the presence of practical instances where the decision to eliminate standardized testing improves or worsens all metrics.

Robots must make and break contact to interact with the world and perform useful tasks. However, planning and control through contact remains a formidable challenge. In this work, we achieve real-time contact-implicit model predictive control with a surprisingly simple method: inverse dynamics trajectory optimization. While trajectory optimization with inverse dynamics is not new, we introduce a series of incremental innovations that collectively enable fast model predictive control on a variety of challenging manipulation and locomotion tasks. We implement these innovations in an open-source solver, and present a variety of simulation examples to support the effectiveness of the proposed approach. Additionally, we demonstrate contact-implicit model predictive control on hardware at over 100 Hz for a 20 degree-of-freedom bi-manual manipulation task.

The protection of Industrial Control Systems (ICS) that are employed in public critical infrastructures is of utmost importance due to catastrophic physical damages cyberattacks may cause. The research community requires testbeds for validation and comparing various intrusion detection algorithms to protect ICS. However, there exist high barriers to entry for research and education in the ICS cybersecurity domain due to expensive hardware, software, and inherent dangers of manipulating real-world systems. To close the gap, built upon recently developed 3D high-fidelity simulators, we further showcase our integrated framework to automatically launch cyberattacks, collect data, train machine learning models, and evaluate for practical chemical and manufacturing processes. On our testbed, we validate our proposed intrusion detection model called Minimal Threshold and Window SVM (MinTWin SVM) that utilizes unsupervised machine learning via a one-class SVM in combination with a sliding window and classification threshold. Results show that MinTWin SVM minimizes false positives and is responsive to physical process anomalies. Furthermore, we incorporate our framework with ICS cybersecurity education by using our dataset in an undergraduate machine learning course where students gain hands-on experience in practicing machine learning theory with a practical ICS dataset. All of our implementations have been open-sourced.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司