Sea ice profoundly influences the polar environment and the global climate. Traditionally, Sea ice has been modeled as a continuum under Eulerian coordinates to describe its large-scale features, using, for instance, viscous-plastic rheology. Recently, Lagrangian particle models, also known as the discrete element method (DEM) models, have been utilized for characterizing the motion of individual sea ice fragments (called floes) at scales of 10 km and smaller, especially in marginal ice zones. This paper develops a multiscale model that couples the particle and the continuum systems to facilitate an effective representation of the dynamical and statistical features of sea ice across different scales. The multiscale model exploits a Boltzmann-type system that links the particle movement with the continuum equations. For the small-scale dynamics, it describes the motion of each sea ice floe. Then, as the large-scale continuum component, it treats the statistical moments of mass density and linear and angular velocities. The evolution of these statistics affects the motion of individual floes, which in turn provides bulk feedback that adjusts the large-scale dynamics. Notably, the particle model characterizing the sea ice floes is localized and fully parallelized, in a framework that is sometimes called superparameterization, which significantly improves computation efficiency. Numerical examples demonstrate the effective performance of the multiscale model. Additionally, the study demonstrates that the multiscale model has a linear-order approximation to the truth model.
Structured sentiment analysis (SSA) aims to automatically extract people's opinions from a text in natural language and adequately represent that information in a graph structure. One of the most accurate methods for performing SSA was recently proposed and consists of approaching it as a dependency parsing task. Although we can find in the literature how transition-based algorithms excel in dependency parsing in terms of accuracy and efficiency, all proposed attempts to tackle SSA following that approach were based on graph-based models. In this article, we present the first transition-based method to address SSA as dependency parsing. Specifically, we design a transition system that processes the input text in a left-to-right pass, incrementally generating the graph structure containing all identified opinions. To effectively implement our final transition-based model, we resort to a Pointer Network architecture as a backbone. From an extensive evaluation, we demonstrate that our model offers the best performance to date in practically all cases among prior dependency-based methods, and surpass recent task-specific techniques on the most challenging datasets. We additionally include an in-depth analysis and empirically prove that the overall time-complexity cost of our approach is quadratic in the sentence length, being more efficient than top-performing graph-based parsers.
In this paper, we propose DeepTree, a novel method for modeling trees based on learning developmental rules for branching structures instead of manually defining them. We call our deep neural model situated latent because its behavior is determined by the intrinsic state -encoded as a latent space of a deep neural model- and by the extrinsic (environmental) data that is situated as the location in the 3D space and on the tree structure. We use a neural network pipeline to train a situated latent space that allows us to locally predict branch growth only based on a single node in the branch graph of a tree model. We use this representation to progressively develop new branch nodes, thereby mimicking the growth process of trees. Starting from a root node, a tree is generated by iteratively querying the neural network on the newly added nodes resulting in the branching structure of the whole tree. Our method enables generating a wide variety of tree shapes without the need to define intricate parameters that control their growth and behavior. Furthermore, we show that the situated latents can also be used to encode the environmental response of tree models, e.g., when trees grow next to obstacles. We validate the effectiveness of our method by measuring the similarity of our tree models and by procedurally generated ones based on a number of established metrics for tree form.
Conversational search systems can improve user experience in digital libraries by facilitating a natural and intuitive way to interact with library content. However, most conversational search systems are limited to performing simple tasks and controlling smart devices. Therefore, there is a need for systems that can accurately understand the user's information requirements and perform the appropriate search activity. Prior research on intelligent systems suggested that it is possible to comprehend the functional aspect of discourse (search intent) by identifying the speech acts in user dialogues. In this work, we automatically identify the speech acts associated with spoken utterances and use them to predict the system-level search actions. First, we conducted a Wizard-of-Oz study to collect data from 75 search sessions. We performed thematic analysis to curate a gold standard dataset -- containing 1,834 utterances and 509 system actions -- of human-system interactions in three information-seeking scenarios. Next, we developed attention-based deep neural networks to understand natural language and predict speech acts. Then, the speech acts were fed to the model to predict the corresponding system-level search actions. We also annotated a second dataset to validate our results. For the two datasets, the best-performing classification model achieved maximum accuracy of 90.2% and 72.7% for speech act classification and 58.8% and 61.1%, respectively, for search act classification.
With the explosive growth of textual information, summarization systems have become increasingly important. This work aims at indicating the current state of the art in abstractive text summarization concisely. As part of this, we outline the current paradigm shifts towards pre-trained encoder-decoder models and large autoregressive language models. Additionally, we delve further into the challenges of evaluating summarization systems and the potential of instruction-tuned models for zero-shot summarization. Finally, we provide a brief overview of how summarization systems are currently being integrated into commercial applications.
Code execution is a fundamental aspect of programming language semantics that reflects the exact behavior of the code. However, most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures. In this paper, we investigate how well pre-trained models can understand and perform code execution. We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution, which challenges existing models such as Codex. We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension. We evaluate CodeExecutor on code execution and show its promising performance and limitations. We also demonstrate its potential benefits for code intelligence tasks such as zero-shot code-to-code search and text-to-code generation. Our analysis provides insights into the learning and generalization abilities of pre-trained models for code execution.
The heavy-tailed behavior of the generalized extreme-value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires, etc. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate-sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood-free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network-based method provides Generalized Extreme Value (GEV) distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000-year annual maximum temperature data from the Community Climate System Model version 3 (CCSM3) across North America for three atmospheric concentrations: 289 ppm $\mathrm{CO}_2$ (pre-industrial), 700 ppm $\mathrm{CO}_2$ (future conditions), and 1400 ppm $\mathrm{CO}_2$, and compare the results with those obtained using the maximum likelihood approach.
This study contributes to the recent discussions on indicating interdisciplinarity, i.e., going beyond catch-all metrics of interdisciplinarity. We propose a contextual framework to improve the granularity and usability of the existing methodology for interdisciplinary knowledge flow (IKF) in which scientific disciplines import and export knowledge from/to other disciplines. To characterize the knowledge exchange between disciplines, we recognize three aspects of IKF under this framework, namely, broadness, intensity, and homogeneity. We show how to utilize them to uncover different forms of interdisciplinarity, especially between disciplines with the largest volume of IKF. We apply this framework in two use cases, one at the level of disciplines and one at the level of journals, to show how it can offer a more holistic and detailed viewpoint on the interdisciplinarity of scientific entities than aggregated and context-unaware indicators. We further compare our proposed framework, an indicating process, with established indicators and discuss how such information tools on interdisciplinarity can assist science policy practices such as performance-based research funding systems and panel-based peer review processes.
Some patients with COVID-19 show changes in signs and symptoms such as temperature and oxygen saturation days before being positively tested for SARS-CoV-2, while others remain asymptomatic. It is important to identify these subgroups and to understand what biological and clinical predictors are related to these subgroups. This information will provide insights into how the immune system may respond differently to infection and can further be used to identify infected individuals. We propose a flexible nonparametric mixed-effects mixture model that identifies risk factors and classifies patients with biological changes. We model the latent probability of biological changes using a logistic regression model and trajectories in the latent groups using smoothing splines. We developed an EM algorithm to maximize the penalized likelihood for estimating all parameters and mean functions. We evaluate our methods by simulations and apply the proposed model to investigate changes in temperature in a cohort of COVID-19-infected hemodialysis patients.
Temporal sentence grounding in videos (TSGV), a.k.a., natural language video localization (NLVL) or video moment retrieval (VMR), aims to retrieve a temporal moment that semantically corresponds to a language query from an untrimmed video. Connecting computer vision and natural language, TSGV has drawn significant attention from researchers in both communities. This survey attempts to provide a summary of fundamental concepts in TSGV and current research status, as well as future research directions. As the background, we present a common structure of functional components in TSGV, in a tutorial style: from feature extraction from raw video and language query, to answer prediction of the target moment. Then we review the techniques for multimodal understanding and interaction, which is the key focus of TSGV for effective alignment between the two modalities. We construct a taxonomy of TSGV techniques and elaborate methods in different categories with their strengths and weaknesses. Lastly, we discuss issues with the current TSGV research and share our insights about promising research directions.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.