亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present our submission to the BabyLM challenge, whose goal was to improve the sample efficiency of language models. We trained an ensemble consisting of a GPT-2 and small LLaMA models on the developmentally-plausible, 10M-word BabyLM dataset, then distilled it into a small, 58M-parameter LLaMA model, which exceeds in performance both of its teachers as well as a similar model trained without distillation. This suggests that distillation can not only retain the full performance of the teacher model when the latter is trained on a sufficiently small dataset; it can exceed it, and lead to significantly better performance than direct training.

相關內容

Large language models (LLMs) show amazing proficiency and fluency in the use of language. Does this mean that they have also acquired insightful linguistic knowledge about the language, to an extent that they can serve as an "expert linguistic annotator"? In this paper, we examine the successes and limitations of the GPT-3, ChatGPT, and GPT-4 models in analysis of sentence meaning structure, focusing on the Abstract Meaning Representation (AMR; Banarescu et al. 2013) parsing formalism, which provides rich graphical representations of sentence meaning structure while abstracting away from surface forms. We compare models' analysis of this semantic structure across two settings: 1) direct production of AMR parses based on zero- and few-shot prompts, and 2) indirect partial reconstruction of AMR via metalinguistic natural language queries (e.g., "Identify the primary event of this sentence, and the predicate corresponding to that event."). Across these settings, we find that models can reliably reproduce the basic format of AMR, and can often capture core event, argument, and modifier structure -- however, model outputs are prone to frequent and major errors, and holistic analysis of parse acceptability shows that even with few-shot demonstrations, models have virtually 0% success in producing fully accurate parses. Eliciting natural language responses produces similar patterns of errors. Overall, our findings indicate that these models out-of-the-box can capture aspects of semantic structure, but there remain key limitations in their ability to support fully accurate semantic analyses or parses.

Lifelong learning requires appropriate solutions, especially for corporate training. Workers usually have difficulty combining training and their normal work. In this context, micro-learning emerges as a suitable solution, since it is based on breaking down new concepts into small fragments or pills of content, which can be consumed in short periods of time. The purpose of this paper is twofold. First, we offer an updated overview of the research on this training paradigm, as well as the different technologies leading to potential commercial solutions. Second, we introduce a proposal to add micro-learning content to more formal distance learning environments (traditional Learning Management Systems or LMS), with the aim of taking advantage of both learning philosophies. Our approach is based on a Service-Oriented Architecture (SOA) that is deployed in the cloud. In order to ensure the full integration of the micro-learning approach in traditional LMSs, we have used two well-known standards in the distance learning field: LTI (Learning Tools Interoperability) and LIS (Learning Information Service). The combination of these two technologies allows the exchange of data with the LMS to monitor the student's activity and results. Finally, we have collected the opinion of lectures from different countries in order to know their thoughts about the potential of this new approach in higher education, obtaining positive feedback.

This work introduces UstanceBR, a multimodal corpus in the Brazilian Portuguese Twitter domain for target-based stance prediction. The corpus comprises 86.8 k labelled stances towards selected target topics, and extensive network information about the users who published these stances on social media. In this article we describe the corpus multimodal data, and a number of usage examples in both in-domain and zero-shot stance prediction based on text- and network-related information, which are intended to provide initial baseline results for future studies in the field.

In Bayesian statistics, the marginal likelihood (ML) is the key ingredient needed for model comparison and model averaging. Unfortunately, estimating MLs accurately is notoriously difficult, especially for models where posterior simulation is not possible. Recently, Christensen (2023) introduced the concept of permutation counting, which can accurately estimate MLs of models for exchangeable binary responses. Such data arise in a multitude of statistical problems, including binary classification, bioassay and sensitivity testing. Permutation counting is entirely likelihood-free and works for any model from which a random sample can be generated, including nonparametric models. Here we present perms, a package implementing permutation counting. As a result of extensive optimisation efforts, perms is computationally efficient and able to handle large data problems. It is available as both an R package and a Python library. A broad gallery of examples illustrating its usage is provided, which includes both standard parametric binary classification and novel applications of nonparametric models, such as changepoint analysis. We also cover the details of the implementation of perms and illustrate its computational speed via a simple simulation study.

The field of 'explainable' artificial intelligence (XAI) has produced highly cited methods that seek to make the decisions of complex machine learning (ML) methods 'understandable' to humans, for example by attributing 'importance' scores to input features. Yet, a lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn from the results of a given XAI method and has also so far hindered the theoretical verification and empirical validation of XAI methods. This means that challenging non-linear problems, typically solved by deep neural networks, presently lack appropriate remedies. Here, we craft benchmark datasets for three different non-linear classification scenarios, in which the important class-conditional features are known by design, serving as ground truth explanations. Using novel quantitative metrics, we benchmark the explanation performance of a wide set of XAI methods across three deep learning model architectures. We show that popular XAI methods are often unable to significantly outperform random performance baselines and edge detection methods. Moreover, we demonstrate that explanations derived from different model architectures can be vastly different; thus, prone to misinterpretation even under controlled conditions.

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread of pre-training models for NLP applications, they almost focused on text-level manipulation, while neglecting the layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model the interaction between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage the image features to incorporate the visual information of words into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at //github.com/microsoft/unilm/tree/master/layoutlm.

北京阿比特科技有限公司