Climate downscaling is a crucial technique within climate research, serving to project low-resolution (LR) climate data to higher resolutions (HR). Previous research has demonstrated the effectiveness of deep learning for downscaling tasks. However, most deep learning models for climate downscaling may not perform optimally for high scaling factors (i.e., 4x, 8x) due to their limited ability to capture the intricate details required for generating HR climate data. Furthermore, climate data behaves differently from image data, necessitating a nuanced approach when employing deep generative models. In response to these challenges, this paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale. We employ a denoising diffusion probabilistic model (DDPM) conditioned on multiple LR climate variables. The proposed model is evaluated using precipitation data from the Community Earth System Model (CESM) v1.2.2 simulation. Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.
Domain randomization is an effective computer vision technique for improving transferability of vision models across visually distinct domains exhibiting similar content. Existing approaches, however, rely extensively on tweaking complex and specialized simulation engines that are difficult to construct, subsequently affecting their feasibility and scalability. This paper introduces BehAVE, a video understanding framework that uniquely leverages the plethora of existing commercial video games for domain randomization, without requiring access to their simulation engines. Under BehAVE (1) the inherent rich visual diversity of video games acts as the source of randomization and (2) player behavior -- represented semantically via textual descriptions of actions -- guides the *alignment* of videos with similar content. We test BehAVE on 25 games of the first-person shooter (FPS) genre across various video and text foundation models and we report its robustness for domain randomization. BehAVE successfully aligns player behavioral patterns and is able to zero-shot transfer them to multiple unseen FPS games when trained on just one FPS game. In a more challenging setting, BehAVE manages to improve the zero-shot transferability of foundation models to unseen FPS games (up to 22%) even when trained on a game of a different genre (Minecraft). Code and dataset can be found at //github.com/nrasajski/BehAVE.
In the current era of vast data and transparent machine learning, it is essential for techniques to operate at a large scale while providing a clear mathematical comprehension of the internal workings of the method. Although there already exist interpretable semi-parametric regression methods for large-scale applications that take into account non-linearity in the data, the complexity of the models is still often limited. One of the main challenges is the absence of interactions in these models, which are left out for the sake of better interpretability but also due to impractical computational costs. To overcome this limitation, we propose a new approach using a factorization method to derive a highly scalable higher-order tensor product spline model. Our method allows for the incorporation of all (higher-order) interactions of non-linear feature effects while having computational costs proportional to a model without interactions. We further develop a meaningful penalization scheme and examine the induced optimization problem. We conclude by evaluating the predictive and estimation performance of our method.
Common crowdsourcing systems average estimates of a latent quantity of interest provided by many crowdworkers to produce a group estimate. We develop a new approach -- predict-each-worker -- that leverages self-supervised learning and a novel aggregation scheme. This approach adapts weights assigned to crowdworkers based on estimates they provided for previous quantities. When skills vary across crowdworkers or their estimates correlate, the weighted sum offers a more accurate group estimate than the average. Existing algorithms such as expectation maximization can, at least in principle, produce similarly accurate group estimates. However, their computational requirements become onerous when complex models, such as neural networks, are required to express relationships among crowdworkers. Predict-each-worker accommodates such complexity as well as many other practical challenges. We analyze the efficacy of predict-each-worker through theoretical and computational studies. Among other things, we establish asymptotic optimality as the number of engagements per crowdworker grows.
Understanding the importance of the inputs on the output is useful across many tasks. This work provides an information-theoretic framework to analyse the influence of inputs for text classification tasks. Natural language processing (NLP) tasks take either a single element input or multiple element inputs to predict an output variable, where an element is a block of text. Each text element has two components: an associated semantic meaning and a linguistic realization. Multiple-choice reading comprehension (MCRC) and sentiment classification (SC) are selected to showcase the framework. For MCRC, it is found that the context influence on the output compared to the question influence reduces on more challenging datasets. In particular, more challenging contexts allow a greater variation in complexity of questions. Hence, test creators need to carefully consider the choice of the context when designing multiple-choice questions for assessment. For SC, it is found the semantic meaning of the input text dominates (above 80\% for all datasets considered) compared to its linguistic realisation when determining the sentiment. The framework is made available at: //github.com/WangLuran/nlp-element-influence
The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding research topic, VIS4ML, keeps growing at a fast pace. To better organize the enormous works and shed light on the developing trend of VIS4ML, we provide a systematic review of these works through this survey. Since data quality greatly impacts the performance of ML models, our survey focuses specifically on summarizing VIS4ML works from the data perspective. First, we categorize the common data handled by ML models into five types, explain the unique features of each type, and highlight the corresponding ML models that are good at learning from them. Second, from the large number of VIS4ML works, we tease out six tasks that operate on these types of data (i.e., data-centric tasks) at different stages of the ML pipeline to understand, diagnose, and refine ML models. Lastly, by studying the distribution of 143 surveyed papers across the five data types, six data-centric tasks, and their intersections, we analyze the prospective research directions and envision future research trends.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.