亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dirac delta distributionally sourced differential equations emerge in many dynamical physical systems from neuroscience to black hole perturbation theory. Most of these lack exact analytical solutions and are thus best tackled numerically. This work describes a generic numerical algorithm which constructs discontinuous spatial and temporal discretisations by operating on discontinuous Lagrange and Hermite interpolation formulae recovering higher order accuracy. It is shown by solving the distributionally sourced wave equation, which has analytical solutions, that numerical weak-form solutions can be recovered to high order accuracy by solving a first-order reduced system of ordinary differential equations. The method-of-lines framework is applied to the DiscoTEX algorithm i.e through discontinuous collocation with implicit-turned-explicit (IMTEX) integration methods which are symmetric and conserve symplectic structure. Furthermore, the main application of the algorithm is proved, for the first-time, by calculating the amplitude at any desired location within the numerical grid, including at the position (and at its right and left limit) where the wave- (or wave-like) equation is discontinuous via interpolation using DiscoTEX. This is shown, firstly by solving the wave- (or wave-like) equation and comparing the numerical weak-form solution to the exact solution. Finally, one shows how to reconstruct the scalar and gravitational metric perturbations from weak-form numerical solutions of a non-rotating black hole, which do not have known exact analytical solutions, and compare against state-of-the-art frequency domain results. One concludes by motivating how DiscoTEX, and related algorithms, open a promising new alternative Extreme-Mass-Ratio-Inspiral (EMRI)s waveform generation route via a self-consistent evolution for the gravitational self-force programme in the time-domain.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We consider the statistical linear inverse problem of making inference on an unknown source function in an elliptic partial differential equation from noisy observations of its solution. We employ nonparametric Bayesian procedures based on Gaussian priors, leading to convenient conjugate formulae for posterior inference. We review recent results providing theoretical guarantees on the quality of the resulting posterior-based estimation and uncertainty quantification, and we discuss the application of the theory to the important classes of Gaussian series priors defined on the Dirichlet-Laplacian eigenbasis and Mat\'ern process priors. We provide an implementation of posterior inference for both classes of priors, and investigate its performance in a numerical simulation study.

We consider a class of linear Vlasov partial differential equations driven by Wiener noise. Different types of stochastic perturbations are treated: additive noise, multiplicative It\^o and Stratonovich noise, and transport noise. We propose to employ splitting integrators for the temporal discretization of these stochastic partial differential equations. These integrators are designed in order to preserve qualitative properties of the exact solutions depending on the stochastic perturbation, such as preservation of norms or positivity of the solutions. We provide numerical experiments in order to illustrate the properties of the proposed integrators and investigate mean-square rates of convergence.

We present a new method to compute the solution to a nonlinear tensor differential equation with dynamical low-rank approximation. The idea of dynamical low-rank approximation is to project the differential equation onto the tangent space of a low-rank tensor manifold at each time. Traditionally, an orthogonal projection onto the tangent space is employed, which is challenging to compute for nonlinear differential equations. We introduce a novel interpolatory projection onto the tangent space that is easily computed for many nonlinear differential equations and satisfies the differential equation at a set of carefully selected indices. To select these indices, we devise a new algorithm based on the discrete empirical interpolation method (DEIM) that parameterizes any tensor train and its tangent space with tensor cross interpolants. We demonstrate the proposed method with applications to tensor differential equations arising from the discretization of partial differential equations.

The approach to analysing compositional data has been dominated by the use of logratio transformations, to ensure exact subcompositional coherence and, in some situations, exact isometry as well. A problem with this approach is that data zeros, found in most applications, have to be replaced to allow the logarithmic transformation. An alternative new approach, called the `chiPower' transformation, which allows data zeros, is to combine the standardization inherent in the chi-square distance in correspondence analysis, with the essential elements of the Box-Cox power transformation. The chiPower transformation is justified because it} defines between-sample distances that tend to logratio distances for strictly positive data as the power parameter tends to zero, and are then equivalent to transforming to logratios. For data with zeros, a value of the power can be identified that brings the chiPower transformation as close as possible to a logratio transformation, without having to substitute the zeros. Especially in the area of high-dimensional data, this alternative approach can present such a high level of coherence and isometry as to be a valid approach to the analysis of compositional data. Furthermore, in a supervised learning context, if the compositional variables serve as predictors of a response in a modelling framework, for example generalized linear models, then the power can be used as a tuning parameter in optimizing the accuracy of prediction through cross-validation. The chiPower-transformed variables have a straightforward interpretation, since they are each identified with single compositional parts, not ratios.

With advances in scientific computing and mathematical modeling, complex scientific phenomena such as galaxy formations and rocket propulsion can now be reliably simulated. Such simulations can however be very time-intensive, requiring millions of CPU hours to perform. One solution is multi-fidelity emulation, which uses data of different fidelities to train an efficient predictive model which emulates the expensive simulator. For complex scientific problems and with careful elicitation from scientists, such multi-fidelity data may often be linked by a directed acyclic graph (DAG) representing its scientific model dependencies. We thus propose a new Graphical Multi-fidelity Gaussian Process (GMGP) model, which embeds this DAG structure (capturing scientific dependencies) within a Gaussian process framework. We show that the GMGP has desirable modeling traits via two Markov properties, and admits a scalable algorithm for recursive computation of the posterior mean and variance along at each depth level of the DAG. We also present a novel experimental design methodology over the DAG given an experimental budget, and propose a nonlinear extension of the GMGP via deep Gaussian processes. The advantages of the GMGP are then demonstrated via a suite of numerical experiments and an application to emulation of heavy-ion collisions, which can be used to study the conditions of matter in the Universe shortly after the Big Bang. The proposed model has broader uses in data fusion applications with graphical structure, which we further discuss.

Spectral methods yield numerical solutions of the Galerkin-truncated versions of nonlinear partial differential equations involved especially in fluid dynamics. In the presence of discontinuities, such as shocks, spectral approximations develop Gibbs oscillations near the discontinuity. This causes the numerical solution to deviate quickly from the true solution. For spectral approximations of the 1D inviscid Burgers equation, nonlinear wave resonances lead to the formation of tygers in well-resolved areas of the flow, far from the shock. Recently, Besse(to be published) has proposed novel spectral relaxation (SR) and spectral purging (SP) schemes for the removal of tygers and Gibbs oscillations in spectral approximations of nonlinear conservation laws. For the 1D inviscid Burgers equation, it is shown that the novel SR and SP approximations of the solution converge strongly in L2 norm to the entropic weak solution, under an appropriate choice of kernels and related parameters. In this work, we carry out a detailed numerical investigation of SR and SP schemes when applied to the 1D inviscid Burgers equation and report the efficiency of shock capture and the removal of tygers. We then extend our study to systems of nonlinear hyperbolic conservation laws - such as the 2x2 system of the shallow water equations and the standard 3x3 system of 1D compressible Euler equations. For the latter, we generalise the implementation of SR methods to non-periodic problems using Chebyshev polynomials. We then turn to singular flow in the 1D wall approximation of the 3D-axisymmetric wall-bounded incompressible Euler equation. Here, in order to determine the blowup time of the solution, we compare the decay of the width of the analyticity strip, obtained from the pure pseudospectral method, with the improved estimate obtained using the novel spectral relaxation scheme.

We present a simple and unified analysis of the Johnson-Lindenstrauss (JL) lemma, a cornerstone in the field of dimensionality reduction critical for managing high-dimensional data. Our approach not only simplifies the understanding but also unifies various constructions under the JL framework, including spherical, binary-coin, sparse JL, Gaussian and sub-Gaussian models. This simplification and unification make significant strides in preserving the intrinsic geometry of data, essential across diverse applications from streaming algorithms to reinforcement learning. Notably, we deliver the first rigorous proof of the spherical construction's effectiveness and provide a general class of sub-Gaussian constructions within this simplified framework. At the heart of our contribution is an innovative extension of the Hanson-Wright inequality to high dimensions, complete with explicit constants. By employing simple yet powerful probabilistic tools and analytical techniques, such as an enhanced diagonalization process, our analysis not only solidifies the JL lemma's theoretical foundation by removing an independence assumption but also extends its practical reach, showcasing its adaptability and importance in contemporary computational algorithms.

This manuscript deals with the analysis of numerical methods for the full discretization (in time and space) of the linear heat equation with Neumann boundary conditions, and it provides the reader with error estimates that are uniform in time. First, we consider the homogeneous equation with homogeneous Neumann boundary conditions over a finite interval. Using finite differences in space and the Euler method in time, we prove that our method is of order 1 in space, uniformly in time, under a classical CFL condition, and despite its lack of consistency at the boundaries. Second, we consider the nonhomogeneous equation with nonhomogeneous Neumann boundary conditions over a finite interval. Using a tailored similar scheme, we prove that our method is also of order 1 in space, uniformly in time, under a classical CFL condition. We indicate how this numerical method allows for a new way to compute steady states of such equations when they exist. We conclude by several numerical experiments to illustrate the sharpness and relevance of our theoretical results, as well as to examine situations that do not meet the hypotheses of our theoretical results, and to illustrate how our results extend to higher dimensions.

Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed reaction-advection-diffusion (RAD) PDE models that are linear in the unobserved quantities. We show that the differential algebra approach can always, in theory, be applied to such models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease in structural identifiability. We conclude by discussing future possibilities and the computational cost of performing structural identifiability analysis on more general PDE models.

We analyze the Schr\"odingerisation method for quantum simulation of a general class of non-unitary dynamics with inhomogeneous source terms. The Schr\"odingerisation technique, introduced in \cite{JLY22a,JLY23}, transforms any linear ordinary and partial differential equations with non-unitary dynamics into a system under unitary dynamics via a warped phase transition that maps the equations into a higher dimension, making them suitable for quantum simulation. This technique can also be applied to these equations with inhomogeneous terms modeling source or forcing terms or boundary and interface conditions, and discrete dynamical systems such as iterative methods in numerical linear algebra, through extra equations in the system. Difficulty airses with the presense of inhomogeneous terms since it can change the stability of the original system. In this paper, we systematically study--both theoretically and numerically--the important issue of recovering the original variables from the Schr\"odingerized equations, even when the evolution operator contains unstable modes. We show that even with unstable modes, one can still construct a stable scheme, yet to recover the original variable one needs to use suitable data in the extended space. We analyze and compare both the discrete and continuous Fourier transforms used in the extended dimension, and derive corresponding error estimates, which allows one to use the more appropriate transform for specific equations. We also provide a smoother initialization for the Schrod\"odingerized system to gain higher order accuracy in the extended space. We homogenize the inhomogeneous terms with a stretch transformation, making it easier to recover the original variable. Our recovering technique also provides a simple and generic framework to solve general ill-posed problems in a computationally stable way.

北京阿比特科技有限公司