Motivated by time series forecasting, we study Online Linear Optimization (OLO) under the coupling of two problem structures: the domain is unbounded, and the performance of an algorithm is measured by its dynamic regret. Handling either of them requires the regret bound to depend on certain complexity measure of the comparator sequence -- specifically, the comparator norm in unconstrained OLO, and the path length in dynamic regret. In contrast to a recent work (Jacobsen & Cutkosky, 2022) that adapts to the combination of these two complexity measures, we propose an alternative complexity measure by recasting the problem into sparse coding. Adaptivity can be achieved by a simple modular framework, which naturally exploits more intricate prior knowledge of the environment. Along the way, we also present a new gradient adaptive algorithm for static unconstrained OLO, designed using novel continuous time machinery. This could be of independent interest.
We consider a linear model which can have a large number of explanatory variables, the errors with an asymmetric distribution or some values of the explained variable are missing at random. In order to take in account these several situations, we consider the non parametric empirical likelihood (EL) estimation method. Because a constraint in EL contains an indicator function then a smoothed function instead of the indicator will be considered. Two smoothed expectile maximum EL methods are proposed, one of which will automatically select the explanatory variables. For each of the methods we obtain the convergence rate of the estimators and their asymptotic normality. The smoothed expectile empirical log-likelihood ratio process follow asymptotically a chi-square distribution and moreover the adaptive LASSO smoothed expectile maximum EL estimator satisfies the sparsity property which guarantees the automatic selection of zero model coefficients. In order to implement these methods, we propose four algorithms.
Visual information extraction (VIE), which aims to simultaneously perform OCR and information extraction in a unified framework, has drawn increasing attention due to its essential role in various applications like understanding receipts, goods, and traffic signs. However, as existing benchmark datasets for VIE mainly consist of document images without the adequate diversity of layout structures, background disturbs, and entity categories, they cannot fully reveal the challenges of real-world applications. In this paper, we propose a large-scale dataset consisting of camera images for VIE, which contains not only the larger variance of layout, backgrounds, and fonts but also much more types of entities. Besides, we propose a novel framework for end-to-end VIE that combines the stages of OCR and information extraction in an end-to-end learning fashion. Different from the previous end-to-end approaches that directly adopt OCR features as the input of an information extraction module, we propose to use contrastive learning to narrow the semantic gap caused by the difference between the tasks of OCR and information extraction. We evaluate the existing end-to-end methods for VIE on the proposed dataset and observe that the performance of these methods has a distinguishable drop from SROIE (a widely used English dataset) to our proposed dataset due to the larger variance of layout and entities. These results demonstrate our dataset is more practical for promoting advanced VIE algorithms. In addition, experiments demonstrate that the proposed VIE method consistently achieves the obvious performance gains on the proposed and SROIE datasets.
In conventional backscatter communication (BackCom) systems, time division multiple access (TDMA) and frequency division multiple access (FDMA) are generally adopted for multiuser backscattering due to their simplicity in implementation. However, as the number of backscatter devices (BDs) proliferates, there will be a high overhead under the traditional centralized control techniques, and the inter-user coordination is unaffordable for the passive BDs, which are of scarce concern in existing works and remain unsolved. To this end, in this paper, we propose a slotted ALOHA-based random access for BackCom systems, in which each BD is randomly chosen and is allowed to coexist with one active device for hybrid multiple access. To excavate and evaluate the performance, a resource allocation problem for max-min transmission rate is formulated, where transmit antenna selection, receive beamforming design, reflection coefficient adjustment, power control, and access probability determination are jointly considered. To deal with this intractable problem, we first transform the objective function with the max-min form into an equivalent linear one, and then decompose the resulting problem into three sub-problems. Next, a block coordinate descent (BCD)-based greedy algorithm with a penalty function, successive convex approximation, and linear programming are designed to obtain sub-optimal solutions for tractable analysis. Simulation results demonstrate that the proposed algorithm outperforms benchmark algorithms in terms of transmission rate and fairness.
Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.
One of the central questions in the theory of deep learning is to understand how neural networks learn hierarchical features. The ability of deep networks to extract salient features is crucial to both their outstanding generalization ability and the modern deep learning paradigm of pretraining and finetuneing. However, this feature learning process remains poorly understood from a theoretical perspective, with existing analyses largely restricted to two-layer networks. In this work we show that three-layer neural networks have provably richer feature learning capabilities than two-layer networks. We analyze the features learned by a three-layer network trained with layer-wise gradient descent, and present a general purpose theorem which upper bounds the sample complexity and width needed to achieve low test error when the target has specific hierarchical structure. We instantiate our framework in specific statistical learning settings -- single-index models and functions of quadratic features -- and show that in the latter setting three-layer networks obtain a sample complexity improvement over all existing guarantees for two-layer networks. Crucially, this sample complexity improvement relies on the ability of three-layer networks to efficiently learn nonlinear features. We then establish a concrete optimization-based depth separation by constructing a function which is efficiently learnable via gradient descent on a three-layer network, yet cannot be learned efficiently by a two-layer network. Our work makes progress towards understanding the provable benefit of three-layer neural networks over two-layer networks in the feature learning regime.
Real-time perception and motion planning are two crucial tasks for autonomous driving. While there are many research works focused on improving the performance of perception and motion planning individually, it is still not clear how a perception error may adversely impact the motion planning results. In this work, we propose a joint simulation framework with LiDAR-based perception and motion planning for real-time automated driving. Taking the sensor input from the CARLA simulator with additive noise, a LiDAR perception system is designed to detect and track all surrounding vehicles and to provide precise orientation and velocity information. Next, we introduce a new collision bound representation that relaxes the communication cost between the perception module and the motion planner. A novel collision checking algorithm is implemented using line intersection checking that is more efficient for long distance range in comparing to the traditional method of occupancy grid. We evaluate the joint simulation framework in CARLA for urban driving scenarios. Experiments show that our proposed automated driving system can execute at 25 Hz, which meets the real-time requirement. The LiDAR perception system has high accuracy within 20 meters when evaluated with the ground truth. The motion planning results in consistent safe distance keeping when tested in CARLA urban driving scenarios.
We propose and study a variant of pliable index coding (PICOD) where receivers have preferences for their unknown messages and give each unknown message a preference ranking. We call this the preferential pliable index-coding (PPICOD) problem and study the Pareto trade-off between the code length and overall satisfaction metric among all receivers. We derive theoretical characteristics of the PPICOD problem in terms of interactions between achievable code length and satisfaction metric. We also conceptually characterise two methods for computation of the Pareto boundary of the set of all achievable code length-satisfaction pairs. As for a coding scheme, we extend the Greedy Cover Algorithm for PICOD by Brahma and Fragouli, 2015, to balance the number of satisfied receivers and average satisfaction metric in each iteration. We present numerical results which show the efficacy of our proposed algorithm in approaching the Pareto boundary, found via brute-force computation.
In this paper, we address the problem of generalized category discovery (GCD), \ie, given a set of images where part of them are labelled and the rest are not, the task is to automatically cluster the images in the unlabelled data, leveraging the information from the labelled data, while the unlabelled data contain images from the labelled classes and also new ones. GCD is similar to semi-supervised learning (SSL) but is more realistic and challenging, as SSL assumes all the unlabelled images are from the same classes as the labelled ones. We also do not assume the class number in the unlabelled data is known a-priori, making the GCD problem even harder. To tackle the problem of GCD without knowing the class number, we propose an EM-like framework that alternates between representation learning and class number estimation. We propose a semi-supervised variant of the Gaussian Mixture Model (GMM) with a stochastic splitting and merging mechanism to dynamically determine the prototypes by examining the cluster compactness and separability. With these prototypes, we leverage prototypical contrastive learning for representation learning on the partially labelled data subject to the constraints imposed by the labelled data. Our framework alternates between these two steps until convergence. The cluster assignment for an unlabelled instance can then be retrieved by identifying its nearest prototype. We comprehensively evaluate our framework on both generic image classification datasets and challenging fine-grained object recognition datasets, achieving state-of-the-art performance.
Reinforcement learning (RL) mimics how humans and animals interact with the environment. The setting is somewhat idealized because, in actual tasks, other agents in the environment have their own goals and behave adaptively to the ego agent. To thrive in those environments, the agent needs to influence other agents so their actions become more helpful and less harmful. Research in computational economics distills two ways to influence others directly: by providing tangible goods (mechanism design) and by providing information (information design). This work investigates information design problems for a group of RL agents. The main challenges are two-fold. One is the information provided will immediately affect the transition of the agent trajectories, which introduces additional non-stationarity. The other is the information can be ignored, so the sender must provide information that the receivers are willing to respect. We formulate the Markov signaling game, and develop the notions of signaling gradient and the extended obedience constraints that address these challenges. Our algorithm is efficient on various mixed-motive tasks and provides further insights into computational economics. Our code is available at //github.com/YueLin301/InformationDesignMARL.
A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.