亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the graph signal processing problem of anomaly detection in time series of graphs. We examine two related, complementary inference tasks: the detection of anomalous graphs within a time series, and the detection of temporally anomalous vertices. We approach these tasks via the adaptation of statistically principled methods for joint graph inference, specifically \emph{multiple adjacency spectral embedding} (MASE). We demonstrate that our method is effective for our inference tasks. Moreover, we assess the performance of our method in terms of the underlying nature of detectable anomalies. We further provide the theoretical justification for our method and insight into its use. Applied to the Enron communication graph and a large-scale commercial search engine time series of graphs, our approaches demonstrate their applicability and identify the anomalous vertices beyond just large degree change.

相關內容

This paper primarily focuses on evaluating and benchmarking the robustness of visual representations in the context of object assembly tasks. Specifically, it investigates the alignment and insertion of objects with geometrical extrusions and intrusions, commonly referred to as a peg-in-hole task. The accuracy required to detect and orient the peg and the hole geometry in SE(3) space for successful assembly poses significant challenges. Addressing this, we employ a general framework in visuomotor policy learning that utilizes visual pretraining models as vision encoders. Our study investigates the robustness of this framework when applied to a dual-arm manipulation setup, specifically to the grasp variations. Our quantitative analysis shows that existing pretrained models fail to capture the essential visual features necessary for this task. However, a visual encoder trained from scratch consistently outperforms the frozen pretrained models. Moreover, we discuss rotation representations and associated loss functions that substantially improve policy learning. We present a novel task scenario designed to evaluate the progress in visuomotor policy learning, with a specific focus on improving the robustness of intricate assembly tasks that require both geometrical and spatial reasoning. Videos, additional experiments, dataset, and code are available at //bit.ly/geometric-peg-in-hole .

Although deep learning models for abnormality classification can perform well in screening mammography, the demographic, imaging, and clinical characteristics associated with increased risk of model failure remain unclear. This retrospective study uses the Emory BrEast Imaging Dataset(EMBED) containing mammograms from 115931 patients imaged at Emory Healthcare between 2013-2020, with BI-RADS assessment, region of interest coordinates for abnormalities, imaging features, pathologic outcomes, and patient demographics. Multiple deep learning models were trained to distinguish between abnormal tissue patches and randomly selected normal tissue patches from screening mammograms. We assessed model performance by subgroups defined by age, race, pathologic outcome, tissue density, and imaging characteristics and investigated their associations with false negatives (FN) and false positives (FP). We also performed multivariate logistic regression to control for confounding between subgroups. The top-performing model, ResNet152V2, achieved accuracy of 92.6%(95%CI=92.0-93.2%), and AUC 0.975(95%CI=0.972-0.978). Before controlling for confounding, nearly all subgroups showed statistically significant differences in model performance. However, after controlling for confounding, we found lower FN risk associates with Other race(RR=0.828;p=.050), biopsy-proven benign lesions(RR=0.927;p=.011), and mass(RR=0.921;p=.010) or asymmetry(RR=0.854;p=.040); higher FN risk associates with architectural distortion (RR=1.037;p<.001). Higher FP risk associates to BI-RADS density C(RR=1.891;p<.001) and D(RR=2.486;p<.001). Our results demonstrate subgroup analysis is important in mammogram classifier performance evaluation, and controlling for confounding between subgroups elucidates the true associations between variables and model failure. These results can help guide developing future breast cancer detection models.

Recent work in vision-and-language pretraining has investigated supervised signals from object detection data to learn better, fine-grained multimodal representations. In this work, we take a step further and explore how we can tap into supervision from small-scale visual relation data. In particular, we propose two pretraining approaches to contextualise visual entities in a multimodal setup. With verbalised scene graphs, we transform visual relation triplets into structured captions, and treat them as additional image descriptions. With masked relation prediction, we further encourage relating entities from image regions with visually masked contexts. When applied to strong baselines pretrained on large amounts of Web data, zero-shot evaluations on both coarse-grained and fine-grained tasks show the efficacy of our methods in learning multimodal representations from weakly-supervised relations data.

An automated sizing approach for analog circuits using evolutionary algorithms is presented in this paper. A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function that has resulted in faster convergence to the optimal solution. The algorithms are tuned and modified to converge to a better optimal solution with less standard deviation for multiple runs compared to standard versions. Modified versions of the artificial bee colony optimisation algorithm, genetic algorithm, grey wolf optimisation algorithm, and particle swarm optimisation algorithm are tested and compared for the optimal sizing of two operational amplifier topologies. An extensive performance evaluation of all the modified algorithms showed that the modifications have resulted in consistent performance with improved convergence for all the algorithms. The implementation of parallel computation in the algorithms has reduced run time. Among the considered algorithms, the modified artificial bee colony optimisation algorithm gave the most optimal solution with consistent results across multiple runs.

When applying deep learning to remote sensing data in archaeological research, a notable obstacle is the limited availability of suitable datasets for training models. The application of transfer learning is frequently employed to mitigate this drawback. However, there is still a need to explore its effectiveness when applied across different archaeological datasets. This paper compares the performance of various transfer learning configurations using two semantic segmentation deep neural networks on two LiDAR datasets. The experimental results indicate that transfer learning-based approaches in archaeology can lead to performance improvements, although a systematic enhancement has not yet been observed. We provide specific insights about the validity of such techniques that can serve as a baseline for future works.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司