This paper develops efficient preconditioned iterative solvers for incompressible flow problems discretised by an enriched Taylor-Hood mixed approximation, in which the usual pressure space is augmented by a piecewise constant pressure to ensure local mass conservation. This enrichment process causes over-specification of the pressure when the pressure space is defined by the union of standard Taylor-Hood basis functions and piecewise constant pressure basis functions, which complicates the design and implementation of efficient solvers for the resulting linear systems. We first describe the impact of this choice of pressure space specification on the matrices involved. Next, we show how to recover effective solvers for Stokes problems, with preconditioners based on the singular pressure mass matrix, and for Oseen systems arising from linearised Navier-Stokes equations, by using a two-stage pressure convection-diffusion strategy. The codes used to generate the numerical results are available online.
Finding the optimal design of experiments in the Bayesian setting typically requires estimation and optimization of the expected information gain functional. This functional consists of one outer and one inner integral, separated by the logarithm function applied to the inner integral. When the mathematical model of the experiment contains uncertainty about the parameters of interest and nuisance uncertainty, (i.e., uncertainty about parameters that affect the model but are not themselves of interest to the experimenter), two inner integrals must be estimated. Thus, the already considerable computational effort required to determine good approximations of the expected information gain is increased further. The Laplace approximation has been applied successfully in the context of experimental design in various ways, and we propose two novel estimators featuring the Laplace approximation to alleviate the computational burden of both inner integrals considerably. The first estimator applies Laplace's method followed by a Laplace approximation, introducing a bias. The second estimator uses two Laplace approximations as importance sampling measures for Monte Carlo approximations of the inner integrals. Both estimators use Monte Carlo approximation for the remaining outer integral estimation. We provide four numerical examples demonstrating the applicability and effectiveness of our proposed estimators.
This paper delves into the equivalence problem of Smith forms for multivariate polynomial matrices. Generally speaking, multivariate ($n \geq 2$) polynomial matrices and their Smith forms may not be equivalent. However, under certain specific condition, we derive the necessary and sufficient condition for their equivalence. Let $F\in K[x_1,\ldots,x_n]^{l\times m}$ be of rank $r$, $d_r(F)\in K[x_1]$ be the greatest common divisor of all the $r\times r$ minors of $F$, where $K$ is a field, $x_1,\ldots,x_n$ are variables and $1 \leq r \leq \min\{l,m\}$. Our key findings reveal the result: $F$ is equivalent to its Smith form if and only if all the $i\times i$ reduced minors of $F$ generate $K[x_1,\ldots,x_n]$ for $i=1,\ldots,r$.
Shape-restricted inferences have exhibited empirical success in various applications with survival data. However, certain works fall short in providing a rigorous theoretical justification and an easy-to-use variance estimator with theoretical guarantee. Motivated by Deng et al. (2023), this paper delves into an additive and shape-restricted partially linear Cox model for right-censored data, where each additive component satisfies a specific shape restriction, encompassing monotonic increasing/decreasing and convexity/concavity. We systematically investigate the consistencies and convergence rates of the shape-restricted maximum partial likelihood estimator (SMPLE) of all the underlying parameters. We further establish the aymptotic normality and semiparametric effiency of the SMPLE for the linear covariate shift. To estimate the asymptotic variance, we propose an innovative data-splitting variance estimation method that boasts exceptional versatility and broad applicability. Our simulation results and an analysis of the Rotterdam Breast Cancer dataset demonstrate that the SMPLE has comparable performance with the maximum likelihood estimator under the Cox model when the Cox model is correct, and outperforms the latter and Huang (1999)'s method when the Cox model is violated or the hazard is nonsmooth. Meanwhile, the proposed variance estimation method usually leads to reliable interval estimates based on the SMPLE and its competitors.
In this paper we give local error estimates in Sobolev norms for the Galerkin method applied to strongly elliptic pseudodifferential equations on a polygon. By using the K-operator, an operator which averages the values of the Galerkin solution, we construct improved approximations.
In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.
In this paper, conditional stability estimates are derived for unique continuation and Cauchy problems associated to the Poisson equation in ultra-weak variational form. Numerical approximations are obtained as minima of regularized least squares functionals. The arising dual norms are replaced by discretized dual norms, which leads to a mixed formulation in terms of trial- and test-spaces. For stable pairs of such spaces, and a proper choice of the regularization parameter, the $L_2$-error on a subdomain in the obtained numerical approximation can be bounded by the best possible fractional power of the sum of the data error and the error of best approximation. Compared to the use of a standard variational formulation, the latter two errors are measured in weaker norms. To avoid the use of $C^1$-finite element test spaces, nonconforming finite element test spaces can be applied as well. They either lead to the qualitatively same error bound, or in a simplified version, to such an error bound modulo an additional data oscillation term. Numerical results illustrate our theoretical findings.
This paper deals with a novel nonlinear coupled nonlocal reaction-diffusion system proposed for image restoration, characterized by the advantages of preserving low gray level features and textures.The gray level indicator in the proposed model is regularized using a new method based on porous media type equations, which is suitable for recovering noisy blurred images. The well-posedness, regularity, and other properties of the model are investigated, addressing the lack of theoretical analysis in those existing similar types of models. Numerical experiments conducted on texture and satellite images demonstrate the effectiveness of the proposed model in denoising and deblurring tasks.
This paper investigates an efficient exponential integrator generalized multiscale finite element method for solving a class of time-evolving partial differential equations in bounded domains. The proposed method first performs the spatial discretization of the model problem using constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM). This approach consists of two stages. First, the auxiliary space is constructed by solving local spectral problems, where the basis functions corresponding to small eigenvalues are captured. The multiscale basis functions are obtained in the second stage using the auxiliary space by solving local energy minimization problems over the oversampling domains. The basis functions have exponential decay outside the corresponding local oversampling regions. We shall consider the first and second-order explicit exponential Runge-Kutta approach for temporal discretization and to build a fully discrete numerical solution. The exponential integration strategy for the time variable allows us to take full advantage of the CEM-GMsFEM as it enables larger time steps due to its stability properties. We derive the error estimates in the energy norm under the regularity assumption. Finally, we will provide some numerical experiments to sustain the efficiency of the proposed method.
This paper proposes an unsupervised DNN-based speech enhancement approach founded on deep priors (DPs). Here, DP signifies that DNNs are more inclined to produce clean speech signals than noises. Conventional methods based on DP typically involve training on a noisy speech signal using a random noise feature as input, stopping training only a clean speech signal is generated. However, such conventional approaches encounter challenges in determining the optimal stop timing, experience performance degradation due to environmental background noise, and suffer a trade-off between distortion of the clean speech signal and noise reduction performance. To address these challenges, we utilize two DNNs: one to generate a clean speech signal and the other to generate noise. The combined output of these networks closely approximates the noisy speech signal, with a loss term based on spectral kurtosis utilized to separate the noisy speech signal into a clean speech signal and noise. The key advantage of this method lies in its ability to circumvent trade-offs and early stopping problems, as the signal is decomposed by enough steps. Through evaluation experiments, we demonstrate that the proposed method outperforms conventional methods in the case of white Gaussian and environmental noise while effectively mitigating early stopping problems.
This paper proposes a second-order accurate direct Eulerian generalized Riemann problem (GRP) scheme for the ten-moment Gaussian closure equations with source terms. The generalized Riemann invariants associated with the rarefaction waves, the contact discontinuity and the shear waves are given, and the 1D exact Riemann solver is obtained. After that, the generalized Riemann invariants and the Rankine-Hugoniot jump conditions are directly used to resolve the left and right nonlinear waves (rarefaction wave and shock wave) of the local GRP in Eulerian formulation, and then the 1D direct Eulerian GRP scheme is derived. They are much more complicated, technical and nontrivial due to more physical variables and elementary waves. Some 1D and 2D numerical experiments are presented to check the accuracy and high resolution of the proposed GRP schemes, where the 2D direct Eulerian GRP scheme is given by using the Strang splitting method for simplicity. It should be emphasized that several examples of 2D Riemann problems are constructed for the first time.