We study the problem of bipedal robot navigation in complex environments with uncertain and rough terrain. In particular, we consider a scenario in which the robot is expected to reach a desired goal location by traversing an environment with uncertain terrain elevation. Such terrain uncertainties induce not only untraversable regions but also robot motion perturbations. Thus, the problems of terrain mapping and locomotion stability are intertwined. We evaluate three different kernels for Gaussian process (GP) regression to learn the terrain elevation. We also learn the motion deviation resulting from both the terrain as well as the discrepancy between the reduced-order Prismatic Inverted Pendulum Model used for planning and the full-order locomotion dynamics. We propose a hierarchical locomotion-dynamics-aware sampling-based navigation planner. The global navigation planner plans a series of local waypoints to reach the desired goal locations while respecting locomotion stability constraints. Then, a local navigation planner is used to generate a sequence of dynamically feasible footsteps to reach local waypoints. We develop a novel trajectory evaluation metric to minimize motion deviation and maximize information gain of the terrain elevation map. We evaluate the efficacy of our planning framework on Digit bipedal robot simulation in MuJoCo.
In this study, we investigate the optimal transmission policies within an energy harvesting status update system, where the demand for status updates depends on the state of the source. The system monitors a two-state Markovian source that characterizes a stochastic process, which can be in either a normal state or an alarm state, with a higher demand for fresh updates when the source is in the alarm state. We propose a metric to capture the freshness of status updates for each state of the stochastic process by introducing two Age of Information (AoI) variables, extending the definition of AoI to account for the state changes of the stochastic process. We formulate the problem as a Markov Decision Process (MDP), utilizing a transition cost function that applies linear and non-linear penalties based on AoI and the state of the stochastic process. Through analytical investigation, we delve into the structure of the optimal transmission policy for the resulting MDP problem. Furthermore, we evaluate the derived policies via numerical results and demonstrate their effectiveness in reserving energy in anticipation of forthcoming alarm states.
Inspired by the great potential of Large Language Models (LLMs) for solving complex coding tasks, in this paper, we propose a novel approach, named Code2API, to automatically perform APIzation for Stack Overflow code snippets. Code2API does not require additional model training or any manual crafting rules and can be easily deployed on personal computers without relying on other external tools. Specifically, Code2API guides the LLMs through well-designed prompts to generate well-formed APIs for given code snippets. To elicit knowledge and logical reasoning from LLMs, we used chain-of-thought (CoT) reasoning and few-shot in-context learning, which can help the LLMs fully understand the APIzation task and solve it step by step in a manner similar to a developer. Our evaluations show that Code2API achieves a remarkable accuracy in identifying method parameters (65%) and return statements (66%) equivalent to human-generated ones, surpassing the current state-of-the-art approach, APIzator, by 15.0% and 16.5% respectively. Moreover, compared with APIzator, our user study demonstrates that Code2API exhibits superior performance in generating meaningful method names, even surpassing the human-level performance, and developers are more willing to use APIs generated by our approach, highlighting the applicability of our tool in practice. Finally, we successfully extend our framework to the Python dataset, achieving a comparable performance with Java, which verifies the generalizability of our tool.
We study a Federated Reinforcement Learning (FedRL) problem with constraint heterogeneity. In our setting, we aim to solve a reinforcement learning problem with multiple constraints while $N$ training agents are located in $N$ different environments with limited access to the constraint signals and they are expected to collaboratively learn a policy satisfying all constraint signals. Such learning problems are prevalent in scenarios of Large Language Model (LLM) fine-tuning and healthcare applications. To solve the problem, we propose federated primal-dual policy optimization methods based on traditional policy gradient methods. Specifically, we introduce $N$ local Lagrange functions for agents to perform local policy updates, and these agents are then scheduled to periodically communicate on their local policies. Taking natural policy gradient (NPG) and proximal policy optimization (PPO) as policy optimization methods, we mainly focus on two instances of our algorithms, ie, {FedNPG} and {FedPPO}. We show that FedNPG achieves global convergence with an $\tilde{O}(1/\sqrt{T})$ rate, and FedPPO efficiently solves complicated learning tasks with the use of deep neural networks.
In this paper, we propose modelling human translation production as a hierarchy of three embedded translation processes. The proposed architecture replicates the temporal dynamics of keystroke production across sensorimotor, cognitive, and phenomenal layers. Utilizing data from the CRITT TPR-DB, the Task Segment Framework, and the HOF taxonomy, we demonstrate the temporal breakdown of the typing flow on distinct timelines within these three layers.
Accents are crucial in human communication as they help us understand others and allow us to communicate intelligibly in a way others understand us. While there has been significant progress in ASR, African-accented ASR has been understudied due to a lack of training datasets which are often expensive to create and demand colossal human labor. Our study aims to address this problem by automating the annotation process and reducing annotation-related expenses through informative uncertainty-based data selection. We propose a new multi-rounds adaptation process that uses epistemic uncertainty and evaluate it across several domains, datasets, and high-performing ASR models. Our results show that our approach leads to a 69.44\% WER improvement while requiring on average 45\% less data than established baselines. Our approach also improves out-of-distribution generalization for very low-resource accents, demonstrating its viability for building generalizable ASR models in the context of accented African ASR. Moreover, the results of our active learning experiments, simulating real-world settings, where there are no \textit{gold} transcriptions available, also demonstrate the ability of our approach to favor good quality real-life transcriptions. This indicates that our proposed approach addresses the immediate issue of African-accented ASR and has broader implications for improving ASR systems for other underrepresented and low-resource languages and accents. We open-source the code //github.com/bonaventuredossou/active_learning_african_asr
In this study, we introduce Spider RIS technology, which offers an innovative solution to the challenges encountered in movable antennas (MAs) and unmanned aerial vehicle (UAV)-enabled communication systems. By combining the dynamic adaptation capability of MAs and the flexible location advantages of UAVs, this technology offers a dynamic and movable RIS, which can flexibly optimize physical locations within the two-dimensional movement platform. Spider RIS aims to enhance the communication efficiency and reliability of wireless networks, particularly in obstructive environments, by elevating the signal quality and achievable rate. The motivation of Spider RIS is based on the ability to fully exploit the spatial variability of wireless channels and maximize channel capacity even with a limited number of reflecting elements by overcoming the limitations of traditional fixed RIS and energy-intensive UAV systems. Considering the geometry-based millimeter wave channel model, we present the design of a three-stage angular-based hybrid beamforming system empowered by Spider RIS: First, analog beamformers are designed using angular information, followed by the generation of digital precoder/combiner based on the effective channel observed from baseband stage. Subsequently, the joint dynamic positioning with phase shift design of the Spider RIS is optimized using particle swarm optimization, maximizing the achievable rate of the systems.
In the context of machine learning for graphs, many researchers have empirically observed that Deep Graph Networks (DGNs) perform favourably on node classification tasks when the graph structure is homophilic (\ie adjacent nodes are similar). In this paper, we introduce Lying-GCN, a new DGN inspired by opinion dynamics that can adaptively work in both the heterophilic and the homophilic setting. At each layer, each agent (node) shares its own opinions (node embeddings) with its neighbours. Instead of sharing its opinion directly as in GCN, we introduce a mechanism which allows agents to lie. Such a mechanism is adaptive, thus the agents learn how and when to lie according to the task that should be solved. We provide a characterisation of our proposal in terms of dynamical systems, by studying the spectral property of the coefficient matrix of the system. While the steady state of the system collapses to zero, we believe the lying mechanism is still usable to solve node classification tasks. We empirically prove our belief on both synthetic and real-world datasets, by showing that the lying mechanism allows to increase the performances in the heterophilic setting without harming the results in the homophilic one.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.