Smart metering networks are increasingly susceptible to cyber threats, where false data injection (FDI) appears as a critical attack. Data-driven-based machine learning (ML) methods have shown immense benefits in detecting FDI attacks via data learning and prediction abilities. Literature works have mostly focused on centralized learning and deploying FDI attack detection models at the control center, which requires data collection from local utilities like meters and transformers. However, this data sharing may raise privacy concerns due to the potential disclosure of household information like energy usage patterns. This paper proposes a new privacy-preserved FDI attack detection by developing an efficient federated learning (FL) framework in the smart meter network with edge computing. Distributed edge servers located at the network edge run an ML-based FDI attack detection model and share the trained model with the grid operator, aiming to build a strong FDI attack detection model without data sharing. Simulation results demonstrate the efficiency of our proposed FL method over the conventional method without collaboration.
Recurrent neural networks (RNNs) are valued for their computational efficiency and reduced memory requirements on tasks involving long sequence lengths but require high memory-processor bandwidth to train. Checkpointing techniques can reduce the memory requirements by only storing a subset of intermediate states, the checkpoints, but are still rarely used due to the computational overhead of the additional recomputation phase. This work addresses these challenges by introducing memory-efficient gradient checkpointing strategies tailored for the general class of sparse RNNs and Spiking Neural Networks (SNNs). SNNs are energy efficient alternatives to RNNs thanks to their local, event-driven operation and potential neuromorphic implementation. We use the Intelligence Processing Unit (IPU) as an exemplary platform for architectures with distributed local memory. We exploit its suitability for sparse and irregular workloads to scale SNN training on long sequence lengths. We find that Double Checkpointing emerges as the most effective method, optimizing the use of local memory resources while minimizing recomputation overhead. This approach reduces dependency on slower large-scale memory access, enabling training on sequences over 10 times longer or 4 times larger networks than previously feasible, with only marginal time overhead. The presented techniques demonstrate significant potential to enhance scalability and efficiency in training sparse and recurrent networks across diverse hardware platforms, and highlights the benefits of sparse activations for scalable recurrent neural network training.
Optimizing spectral graph neural networks (GNNs) remains a critical challenge in the field, yet the underlying processes are not well understood. In this paper, we investigate the inherent differences between graph convolution parameters and feature transformation parameters in spectral GNNs and their impact on the optimization landscape. Our analysis reveals that these differences contribute to a poorly conditioned problem, resulting in suboptimal performance. To address this issue, we introduce the concept of the block condition number of the Hessian matrix, which characterizes the difficulty of poorly conditioned problems in spectral GNN optimization. We then propose an asymmetric learning approach, dynamically preconditioning gradients during training to alleviate poorly conditioned problems. Theoretically, we demonstrate that asymmetric learning can reduce block condition numbers, facilitating easier optimization. Extensive experiments on eighteen benchmark datasets show that asymmetric learning consistently improves the performance of spectral GNNs for both heterophilic and homophilic graphs. This improvement is especially notable for heterophilic graphs, where the optimization process is generally more complex than for homophilic graphs. Code is available at //github.com/Mia-321/asym-opt.git.
With the increasing availability of multimodal data, many fields urgently require advanced architectures capable of effectively integrating these diverse data sources to address specific problems. This study proposes a hybrid recommendation model that combines the Mixture of Experts (MOE) framework with large language models to enhance the performance of recommendation systems in the healthcare domain. We built a small dataset for recommending healthy food based on patient descriptions and evaluated the model's performance on several key metrics, including Precision, Recall, NDCG, and MAP@5. The experimental results show that the hybrid model outperforms the baseline models, which use MOE or large language models individually, in terms of both accuracy and personalized recommendation effectiveness. The paper finds image data provided relatively limited improvement in the performance of the personalized recommendation system, particularly in addressing the cold start problem. Then, the issue of reclassification of images also affected the recommendation results, especially when dealing with low-quality images or changes in the appearance of items, leading to suboptimal performance. The findings provide valuable insights into the development of powerful, scalable, and high-performance recommendation systems, advancing the application of personalized recommendation technologies in real-world domains such as healthcare.
The ability of a robot to plan complex behaviors with real-time computation, rather than adhering to predesigned or offline-learned routines, alleviates the need for specialized algorithms or training for each problem instance. Monte Carlo Tree Search is a powerful planning algorithm that strategically explores simulated future possibilities, but it requires a discrete problem representation that is irreconcilable with the continuous dynamics of the physical world. We present Spectral Expansion Tree Search (SETS), a real-time, tree-based planner that uses the spectrum of the locally linearized system to construct a low-complexity and approximately equivalent discrete representation of the continuous world. We prove SETS converges to a bound of the globally optimal solution for continuous, deterministic and differentiable Markov Decision Processes, a broad class of problems that includes underactuated nonlinear dynamics, non-convex reward functions, and unstructured environments. We experimentally validate SETS on drone, spacecraft, and ground vehicle robots and one numerical experiment, each of which is not directly solvable with existing methods. We successfully show SETS automatically discovers a diverse set of optimal behaviors and motion trajectories in real time.
Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at //ieee-dataport.org/13824, as well as the GDSG algorithm codes at //github.com/qiyu3816/GDSG.
Survey data typically have missing values due to unit and item nonresponse. Sometimes, survey organizations know the marginal distributions of certain categorical variables in the survey. As shown in previous work, survey organizations can leverage these distributions in multiple imputation for nonignorable unit nonresponse, generating imputations that result in plausible completed-data estimates for the variables with known margins. However, this prior work does not use the design weights for unit nonrespondents; rather, it relies on a set of fabricated weights for these units. We extend this previous work to utilize the design weights for all sampled units. We illustrate the approach using simulation studies.
Individual fairness guarantees are often desirable properties to have, but they become hard to formalize when the dataset contains outliers. Here, we investigate the problem of developing an individually fair $k$-means clustering algorithm for datasets that contain outliers. That is, given $n$ points and $k$ centers, we want that for each point which is not an outlier, there must be a center within the $\frac{n}{k}$ nearest neighbours of the given point. While a few of the recent works have looked into individually fair clustering, this is the first work that explores this problem in the presence of outliers for $k$-means clustering. For this purpose, we define and solve a linear program (LP) that helps us identify the outliers. We exclude these outliers from the dataset and apply a rounding algorithm that computes the $k$ centers, such that the fairness constraint of the remaining points is satisfied. We also provide theoretical guarantees that our method leads to a guaranteed approximation of the fair radius as well as the clustering cost. We also demonstrate our techniques empirically on real-world datasets.
Semantic segmentation often suffers from significant performance degradation when the trained network is applied to a different domain. To address this issue, unsupervised domain adaptation (UDA) has been extensively studied. Existing methods introduce the domain bridging techniques to mitigate substantial domain gap, which construct intermediate domains to facilitate the gradual transfer of knowledge across different domains. However, these strategies often require dataset-specific designs and may generate unnatural intermediate distributions that lead to semantic shift. In this paper, we propose DiDA, a universal degradation-based bridging technique formalized as a diffusion forward process. DiDA consists of two key modules: (1) Degradation-based Intermediate Domain Construction, which creates continuous intermediate domains through simple image degradation operations to encourage learning domain-invariant features as domain differences gradually diminish; (2) Semantic Shift Compensation, which leverages a diffusion encoder to encode and compensate for semantic shift information with degraded time-steps, preserving discriminative representations in the intermediate domains. As a plug-and-play solution, DiDA supports various degradation operations and seamlessly integrates with existing UDA methods. Extensive experiments on prevalent synthetic-to-real semantic segmentation benchmarks demonstrate that DiDA consistently improves performance across different settings and achieves new state-of-the-art results when combined with existing methods.
Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.
Path-based relational reasoning over knowledge graphs has become increasingly popular due to a variety of downstream applications such as question answering in dialogue systems, fact prediction, and recommender systems. In recent years, reinforcement learning (RL) has provided solutions that are more interpretable and explainable than other deep learning models. However, these solutions still face several challenges, including large action space for the RL agent and accurate representation of entity neighborhood structure. We address these problems by introducing a type-enhanced RL agent that uses the local neighborhood information for efficient path-based reasoning over knowledge graphs. Our solution uses graph neural network (GNN) for encoding the neighborhood information and utilizes entity types to prune the action space. Experiments on real-world dataset show that our method outperforms state-of-the-art RL methods and discovers more novel paths during the training procedure.