Machine learning (ML) models are fundamentally shaped by data, and building inclusive ML systems requires significant considerations around how to design representative datasets. Yet, few novice-oriented ML modeling tools are designed to foster hands-on learning of dataset design practices, including how to design for data diversity and inspect for data quality. To this end, we outline a set of four data design practices (DDPs) for designing inclusive ML models and share how we designed a tablet-based application called Co-ML to foster learning of DDPs through a collaborative ML model building experience. With Co-ML, beginners can build image classifiers through a distributed experience where data is synchronized across multiple devices, enabling multiple users to iteratively refine ML datasets in discussion and coordination with their peers. We deployed Co-ML in a 2-week-long educational AIML Summer Camp, where youth ages 13-18 worked in groups to build custom ML-powered mobile applications. Our analysis reveals how multi-user model building with Co-ML, in the context of student-driven projects created during the summer camp, supported development of DDPs including incorporating data diversity, evaluating model performance, and inspecting for data quality. Additionally, we found that students' attempts to improve model performance often prioritized learnability over class balance. Through this work, we highlight how the combination of collaboration, model testing interfaces, and student-driven projects can empower learners to actively engage in exploring the role of data in ML systems.
Moving object segmentation (MOS) and Ego velocity estimation (EVE) are vital capabilities for mobile systems to achieve full autonomy. Several approaches have attempted to achieve MOSEVE using a LiDAR sensor. However, LiDAR sensors are typically expensive and susceptible to adverse weather conditions. Instead, millimeter-wave radar (MWR) has gained popularity in robotics and autonomous driving for real applications due to its cost-effectiveness and resilience to bad weather. Nonetheless, publicly available MOSEVE datasets and approaches using radar data are limited. Some existing methods adopt point convolutional networks from LiDAR-based approaches, ignoring the specific artifacts and the valuable radial velocity information of radar measurements, leading to suboptimal performance. In this paper, we propose a novel transformer network that effectively addresses the sparsity and noise issues and leverages the radial velocity measurements of radar points using our devised radar self- and cross-attention mechanisms. Based on that, our method achieves accurate EVE of the robot and performs MOS using only radar data simultaneously. To thoroughly evaluate the MOSEVE performance of our method, we annotated the radar points in the public View-of-Delft (VoD) dataset and additionally constructed a new radar dataset in various environments. The experimental results demonstrate the superiority of our approach over existing state-of-the-art methods. The code is available at //github.com/ORCA-Uboat/RadarMOSEVE.
Recent advances in AI combine large language models (LLMs) with vision encoders that bring forward unprecedented technical capabilities to leverage for a wide range of healthcare applications. Focusing on the domain of radiology, vision-language models (VLMs) achieve good performance results for tasks such as generating radiology findings based on a patient's medical image, or answering visual questions (e.g., 'Where are the nodules in this chest X-ray?'). However, the clinical utility of potential applications of these capabilities is currently underexplored. We engaged in an iterative, multidisciplinary design process to envision clinically relevant VLM interactions, and co-designed four VLM use concepts: Draft Report Generation, Augmented Report Review, Visual Search and Querying, and Patient Imaging History Highlights. We studied these concepts with 13 radiologists and clinicians who assessed the VLM concepts as valuable, yet articulated many design considerations. Reflecting on our findings, we discuss implications for integrating VLM capabilities in radiology, and for healthcare AI more generally.
The quality of training data are crucial for enhancing the long-text capabilities of foundation models. Despite existing efforts to refine data quality through heuristic rules and evaluations based on data diversity and difficulty, there's a lack of systematic approaches specifically tailored for assessing long texts. Addressing this gap, our work systematically measures the quality of long texts by evaluating three fundamental linguistic dimensions: coherence, cohesion, and complexity. Drawing inspiration from the aforementioned three dimensions, we introduce a suite of metrics designed to evaluate the quality of long texts, encompassing both statistical and pre-trained language model-based ones. Leveraging these metrics, we present LongWanjuan, a bilingual dataset specifically tailored to enhance the training of language models for long-text tasks with over 160B tokens. In LongWanjuan, we categorize long texts into holistic, aggregated, and chaotic types, enabling a detailed analysis of long-text quality. Furthermore, we devise a data mixture recipe that strategically balances different types of long texts within LongWanjuan, leading to significant improvements in model performance on long-text tasks. The code and dataset are available at //github.com/OpenLMLab/LongWanjuan.
Self-supervised learning (SSL) leverages large datasets of unlabeled speech to reach impressive performance with reduced amounts of annotated data. The high number of proposed approaches fostered the emergence of comprehensive benchmarks that evaluate their performance on a set of downstream tasks exploring various aspects of the speech signal. However, while the number of considered tasks has been growing, most proposals rely upon a single downstream architecture that maps the frozen SSL representations to the task labels. This study examines how benchmarking results are affected by changes in the probing head architecture. Interestingly, we found that altering the downstream architecture structure leads to significant fluctuations in the performance ranking of the evaluated models. Against common practices in speech SSL benchmarking, we evaluate larger-capacity probing heads, showing their impact on performance, inference costs, generalization and multi-level feature exploitation.
Diffusion model based Text-to-Image has achieved impressive achievements recently. Although current technology for synthesizing images is highly advanced and capable of generating images with high fidelity, it is still possible to give the show away when focusing on the text area in the generated image. To address this issue, we introduce AnyText, a diffusion-based multilingual visual text generation and editing model, that focuses on rendering accurate and coherent text in the image. AnyText comprises a diffusion pipeline with two primary elements: an auxiliary latent module and a text embedding module. The former uses inputs like text glyph, position, and masked image to generate latent features for text generation or editing. The latter employs an OCR model for encoding stroke data as embeddings, which blend with image caption embeddings from the tokenizer to generate texts that seamlessly integrate with the background. We employed text-control diffusion loss and text perceptual loss for training to further enhance writing accuracy. AnyText can write characters in multiple languages, to the best of our knowledge, this is the first work to address multilingual visual text generation. It is worth mentioning that AnyText can be plugged into existing diffusion models from the community for rendering or editing text accurately. After conducting extensive evaluation experiments, our method has outperformed all other approaches by a significant margin. Additionally, we contribute the first large-scale multilingual text images dataset, AnyWord-3M, containing 3 million image-text pairs with OCR annotations in multiple languages. Based on AnyWord-3M dataset, we propose AnyText-benchmark for the evaluation of visual text generation accuracy and quality. Our project will be open-sourced on //github.com/tyxsspa/AnyText to improve and promote the development of text generation technology.
Advancing automated programming necessitates robust and comprehensive code generation benchmarks, yet current evaluation frameworks largely neglect object-oriented programming (OOP) in favor of functional programming (FP), e.g., HumanEval and MBPP. To address this, our study introduces a pioneering OOP-focused benchmark, featuring 431 Python programs that encompass essential OOP concepts and features like classes and encapsulation methods. We propose a novel evaluation metric, pass@o, tailored for OOP, enhancing traditional pass@k measures. Our evaluation of 23 leading large language models (LLMs), including both general and code-specialized models, reveals three key insights: 1) pass@o offers a more relevant and comprehensive assessment for OOP code generation; 2) Despite excelling in FP, code-specialized LLMs like WizardCoder lag in OOP compared to models like ChatGPT; 3) The poor performance of all advanced LLMs on our OOP benchmark highlights a critical need for improvements in this field. Our benchmark and scripts are publicly released at: //github.com/alphadl/OOP-eval.
Applying DevOps practices to machine learning system is termed as MLOps and machine learning systems evolve on new data unlike traditional systems on requirements. The objective of MLOps is to establish a connection between different open-source tools to construct a pipeline that can automatically perform steps to construct a dataset, train the machine learning model and deploy the model to the production as well as store different versions of model and dataset. Benefits of MLOps is to make sure the fast delivery of the new trained models to the production to have accurate results. Furthermore, MLOps practice impacts the overall quality of the software products and is completely dependent on open-source tools and selection of relevant open-source tools is considered as challenged while a generalized method to select an appropriate open-source tools is desirable. In this paper, we present a framework for recommendation system that processes the contextual information (e.g., nature of data, type of the data) of the machine learning project and recommends a relevant toolchain (tech-stack) for the operationalization of machine learning systems. To check the applicability of the proposed framework, four different approaches i.e., rule-based, random forest, decision trees and k-nearest neighbors were investigated where precision, recall and f-score is measured, the random forest out classed other approaches with highest f-score value of 0.66.
This paper introduces PDEformer, a neural solver for partial differential equations (PDEs) capable of simultaneously addressing various types of PDEs. We advocate representing the PDE in the form of a computational graph, facilitating the seamless integration of both symbolic and numerical information inherent in a PDE. A graph Transformer and an implicit neural representation (INR) are employed to generate mesh-free predicted solutions. Following pretraining on data exhibiting a certain level of diversity, our model achieves zero-shot accuracies on benchmark datasets that surpass those of adequately trained expert models. Additionally, PDEformer demonstrates promising results in the inverse problem of PDE coefficient recovery.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.