亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-agent planning and reinforcement learning can be challenging when agents cannot see the state of the world or communicate with each other due to communication costs, latency, or noise. Partially Observable Stochastic Games (POSGs) provide a mathematical framework for modelling such scenarios. This paper aims to improve the efficiency of planning and reinforcement learning algorithms for POSGs by identifying the underlying structure of optimal state-value functions. The approach involves reformulating the original game from the perspective of a trusted third party who plans on behalf of the agents simultaneously. From this viewpoint, the original POSGs can be viewed as Markov games where states are occupancy states, \ie posterior probability distributions over the hidden states of the world and the stream of actions and observations that agents have experienced so far. This study mainly proves that the optimal state-value function is a convex function of occupancy states expressed on an appropriate basis in all zero-sum, common-payoff, and Stackelberg POSGs.

相關內容

By informing the onset of the degradation process, health status evaluation serves as a significant preliminary step for reliable remaining useful life (RUL) estimation of complex equipment. This paper proposes a novel temporal dynamics learning-based model for detecting change points of individual devices, even under variable operating conditions, and utilises the learnt change points to improve the RUL estimation accuracy. During offline model development, the multivariate sensor data are decomposed to learn fused temporal correlation features that are generalisable and representative of normal operation dynamics across multiple operating conditions. Monitoring statistics and control limit thresholds for normal behaviour are dynamically constructed from these learnt temporal features for the unsupervised detection of device-level change points. The detected change points then inform the degradation data labelling for training a long short-term memory (LSTM)-based RUL estimation model. During online monitoring, the temporal correlation dynamics of a query device is monitored for breach of the control limit derived in offline training. If a change point is detected, the device's RUL is estimated with the well-trained offline model for early preventive action. Using C-MAPSS turbofan engines as the case study, the proposed method improved the accuracy by 5.6\% and 7.5\% for two scenarios with six operating conditions, when compared to existing LSTM-based RUL estimation models that do not consider heterogeneous change points.

In bilevel optimization problems, a leader and a follower make their decisions in a hierarchy, and both decisions influence each other. Usually one assumes that both players have full knowledge also of the other player's data. In a more realistic model, uncertainty can be quantified, e.g., using the robust optimization approach: We assume that the leader does not know the follower's objective precisely, but only up to some uncertainty set, and her aim is to optimize the worst case of the corresponding scenarios. Now the question arises how the complexity of bilevel optimization changes under the additional complications of this uncertainty. We make a further step towards answering this question by examining an easy bilevel problem. In the Bilevel Selection Problem (BSP), the leader and the follower each select some items, while a common number of items to select in total is given, and each player minimizes the total costs of the selected items, according to different sets of item costs. We show that the BSP can be solved in polynomial time and then investigate its robust version. If the item sets controlled by the players are disjoint, it can still be solved in polynomial time for several types of uncertainty sets. Otherwise, we show that the Robust BSP is NP-hard and present a 2-approximation algorithm and exact exponential-time approaches. Furthermore, we investigate variants of the BSP where one or both of the two players take a continuous decision. One variant leads to an example of a bilevel optimization problem whose optimum value may not be attained. For the Robust Continuous BSP, where all variables are continuous, we also develop a new approach for the setting of discrete uncorrelated uncertainty, which gives a polynomial-time algorithm for the Robust Continuous BSP and a pseudopolynomial-time algorithm for the Robust Bilevel Continuous Knapsack Problem.

Effective interaction modeling and behavior prediction of dynamic agents play a significant role in interactive motion planning for autonomous robots. Although existing methods have improved prediction accuracy, few research efforts have been devoted to enhancing prediction model interpretability and out-of-distribution (OOD) generalizability. This work addresses these two challenging aspects by designing a variational auto-encoder framework that integrates graph-based representations and time-sequence models to efficiently capture spatio-temporal relations between interactive agents and predict their dynamics. Our model infers dynamic interaction graphs in a latent space augmented with interpretable edge features that characterize the interactions. Moreover, we aim to enhance model interpretability and performance in OOD scenarios by disentangling the latent space of edge features, thereby strengthening model versatility and robustness. We validate our approach through extensive experiments on both simulated and real-world datasets. The results show superior performance compared to existing methods in modeling spatio-temporal relations, motion prediction, and identifying time-invariant latent features.

This study focuses on order dispatch decisions within two-echelon supply chains, where order dispatch creates economic shipments to reduce delivery costs. Dispatching orders is often constrained by delivery windows, leading to penalty costs for untimely deliveries. Prolonged dispatch times can increase the lead time of orders and potentially violate these delivery windows. To balance the trade-offs between lead time and economic delivery, this study introduces a simulation-optimization approach for determining optimal ordering and dispatch rules. It emphasizes the intricacies of the order dispatch process and explores how these can be integrated into the simulation-optimization procedure to improve ordering and delivery decisions. The study evaluates various options for implementing dispatch rules, including the number of dispatch queues and prioritized dispatch. The results indicate that a single-queue, quantity-based, first-in-first-out dispatch approach achieves the greatest cost reduction while maintaining a desirable service level.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.

Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司