亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Supplier selection and order allocation (SSOA) are key strategic decisions in supply chain management which greatly impact the performance of the supply chain. The SSOA problem has been studied extensively but the lack of attention paid to scalability presents a significant gap preventing adoption of SSOA algorithms by industrial practitioners. This paper presents a novel real-time large-scale industrial SSOA problem, which involves a multi-item, multi-supplier environment with dual-sourcing and penalty constraints across two-tiers of a supply chain of a manufacturing company. The problem supports supplier preferences to work with other suppliers through bidding. This is the largest scale studied so far in literature, and needs to be solved in a real-time auction environment, making computational complexity a key issue. Furthermore, order allocation needs to be undertaken on both supply tiers, with dynamically presented constraints where non-preferred allocation may results in penalties by the suppliers. We subsequently propose Mixed Integer Programming models for individual-tiers as well as an integrated problem, which are complex due to NP-hard nature. The use case allows us to highlight how problem formulation, modelling and choice of modelling can help reduce complexity using Mathematical Programming (MP) and Genetic Algorithm (GA) approaches. The results show an interesting observation that MP outperforms GA to solve the individual-tiers problem as well as the integrated problem. Sensitivity analysis is presented for sourcing strategy, penalty threshold and penalty factor. The developed model was successfully deployed in a supplier conference which helped in significant procurement cost reductions to the manufacturing company.

相關內容

After being trained on a fully-labeled training set, where the observations are grouped into a certain number of known classes, novelty detection methods aim to classify the instances of an unlabeled test set while allowing for the presence of previously unseen classes. These models are valuable in many areas, ranging from social network and food adulteration analyses to biology, where an evolving population may be present. In this paper, we focus on a two-stage Bayesian semiparametric novelty detector, also known as Brand, recently introduced in the literature. Leveraging on a model-based mixture representation, Brand allows clustering the test observations into known training terms or a single novelty term. Furthermore, the novelty term is modeled with a Dirichlet Process mixture model to flexibly capture any departure from the known patterns. Brand was originally estimated using MCMC schemes, which are prohibitively costly when applied to high-dimensional data. To scale up Brand applicability to large datasets, we propose to resort to a variational Bayes approach, providing an efficient algorithm for posterior approximation. We demonstrate a significant gain in efficiency and excellent classification performance with thorough simulation studies. Finally, to showcase its applicability, we perform a novelty detection analysis using the openly-available Statlog dataset, a large collection of satellite imaging spectra, to search for novel soil types.

Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G), particularly in the context of connecting the unconnected and ultraconnecting the connected. Such digital inclusion thrive makes resource management problems, especially those accounting for load-balancing considerations, of particular interest. The conventional model-based optimization methods, however, often fail to meet the real-time processing and quality-of-service needs, due to the high heterogeneity of the space-air-ground networks, and the typical complexity of the classical algorithms. Given the premises of artificial intelligence at automating wireless networks design and the large-scale heterogeneity of non-terrestrial networks, this paper focuses on showcasing the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications. The paper first overviews the most relevant state-of-the art in the context of machine learning applications to the resource allocation problems, with a dedicated attention to space-air-ground networks. The paper then proposes, and shows the benefit of, one specific use case that uses ensembling deep neural networks for optimizing the user scheduling policies in integrated space-high altitude platform station (HAPS)-ground networks. Finally, the paper sheds light on the challenges and open issues that promise to spur the integration of machine learning in space-air-ground networks, namely, online HAPS power adaptation, learning-based channel sensing, data-driven multi-HAPSs resource management, and intelligent flying taxis-empowered systems.

Neglected tropical diseases (NTDs) continue to affect the livelihood of individuals in countries in the Southeast Asia and Western Pacific region. These diseases have been long existing and have caused devastating health problems and economic decline to people in low- and middle-income (developing) countries. An estimated 1.7 billion of the world's population suffer one or more NTDs annually, this puts approximately one in five individuals at risk for NTDs. In addition to health and social impact, NTDs inflict significant financial burden to patients, close relatives, and are responsible for billions of dollars lost in revenue from reduced labor productivity in developing countries alone. There is an urgent need to better improve the control and eradication or elimination efforts towards NTDs. This can be achieved by utilizing machine learning tools to better the surveillance, prediction and detection program, and combat NTDs through the discovery of new therapeutics against these pathogens. This review surveys the current application of machine learning tools for NTDs and the challenges to elevate the state-of-the-art of NTDs surveillance, management, and treatment.

With the advancements in deep learning (DL) and an increasing interest in data-driven speech processing methods, there is a major challenge in accessing pathological speech data. Public challenge data offers a potential remedy for this but may expose patient health information by re-identification attacks. Therefore, we investigate in this study whether or not pathological speech is more vulnerable to such re-identification than healthy speech. Our study is the first large-scale investigation on the effects of different speech pathology on automatic speaker verification (ASV) using a real-world pathological speech corpus of more than 2,000 test subjects with various speech and voice disorders from different ages. Utilizing a DL-based ASV method, we obtained a mean equal error rate (EER) of 0.89% with a standard deviation of 0.06%, which is a factor of three lower than comparable healthy speech databases. We further perform detailed analyses of external influencing factors on ASV such as age, pathology, recording environment, utterance length, and intelligibility, to explore their respective effect. Our experiments indicate that some types of speech pathology, in particular dysphonia, regardless of speech intelligibility, are more vulnerable to a breach of privacy compared to healthy speech. We also observe that the effect of pathology lies in the range of other factors, such as age, microphone, and recording environment.

Relying on others can be as risky as it can be rewarding. Advice seekers must disentangle good advice from bad, and balance the potential benefits of shared wisdom against the risks of being misled. Groups are most effective at sharing information and solving problems together when everyone is sensitive to ``who knows what.'' Acquiring such knowledge in the first place, however, is not trivial -- especially in contexts where background information is limited. What underlying cognitive abilities are needed for social learning to be useful in information-limited environments? Here, we propose that the capacity for flexible social inference plays a key role in human group behavior, allowing latent properties such as success or skill to be inferred from others' outward behavior even when there is no direct access to others' private rewards and "success" manifests differently from context to context. We begin by formalizing our proposal in a cognitive model and comparing this model's predictions against those of simpler heuristics in a series of computational simulations. We then evaluated these predictions in three large-scale behavioral experiments using a multi-agent search paradigm with hidden rewards. In Experiment 1, we found that average performance improves as a function of group size at a rate predicted by our model but not by three simpler alternatives. In Experiment 2, we placed human participants in controlled scenarios with artificial agents to more systematically evaluate the conditions under which people choose to rely on social information. Finally, in Experiment 3, we generalized these findings to a more complex and noisy environment, suggesting regimes where inferences may break down. Taken together, we find that even the most rudimentary social cognition abilities may facilitate the characteristic flexibility of human collective behavior.

Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.

Bidding strategies that help advertisers determine bidding prices are receiving increasing attention as more and more ad impressions are sold through real-time bidding systems. This paper first describes the problem and challenges of optimizing bidding strategies for individual advertisers in real-time bidding display advertising. Then, several representative bidding strategies are introduced, especially the research advances and challenges of reinforcement learning-based bidding strategies. Further, we quantitatively evaluate the performance of several representative bidding strategies on the iPinYou dataset. Specifically, we examine the effects of state, action, and reward function on the performance of reinforcement learning-based bidding strategies. Finally, we summarize the general steps for optimizing bidding strategies using reinforcement learning algorithms and present our suggestions.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

北京阿比特科技有限公司