We propose a method to numerically compute fractional derivatives (or the fractional Laplacian) on the whole real line via Riesz fractional integrals. The compactified real line is divided into a number of intervals, thus amounting to a multi-domain approach; after transformations in accordance with the underlying $Z_{q}$ curve ensuring analyticity of the respective integrands, the integrals over the different domains are computed with a Clenshaw-Curtis algorithm. As an example, we consider solitary waves for fractional Korteweg-de Vries equations and compare these to results obtained with a discrete Fourier transform.
We analyze the Schr\"odingerisation method for quantum simulation of a general class of non-unitary dynamics with inhomogeneous source terms. The Schr\"odingerisation technique, introduced in \cite{JLY22a,JLY23}, transforms any linear ordinary and partial differential equations with non-unitary dynamics into a system under unitary dynamics via a warped phase transition that maps the equations into a higher dimension, making them suitable for quantum simulation. This technique can also be applied to these equations with inhomogeneous terms modeling source or forcing terms or boundary and interface conditions, and discrete dynamical systems such as iterative methods in numerical linear algebra, through extra equations in the system. Difficulty airses with the presense of inhomogeneous terms since it can change the stability of the original system. In this paper, we systematically study--both theoretically and numerically--the important issue of recovering the original variables from the Schr\"odingerized equations, even when the evolution operator contains unstable modes. We show that even with unstable modes, one can still construct a stable scheme, yet to recover the original variable one needs to use suitable data in the extended space. We analyze and compare both the discrete and continuous Fourier transforms used in the extended dimension, and derive corresponding error estimates, which allows one to use the more appropriate transform for specific equations. We also provide a smoother initialization for the Schrod\"odingerized system to gain higher order accuracy in the extended space. We homogenize the inhomogeneous terms with a stretch transformation, making it easier to recover the original variable. Our recovering technique also provides a simple and generic framework to solve general ill-posed problems in a computationally stable way.
This paper delves into a nonparametric estimation approach for the interaction function within diffusion-type particle system models. We introduce two estimation methods based upon an empirical risk minimization. Our study encompasses an analysis of the stochastic and approximation errors associated with both procedures, along with an examination of certain minimax lower bounds. In particular, we show that there is a natural metric under which the corresponding minimax estimation error of the interaction function converges to zero with parametric rate. This result is rather suprising given complexity of the underlying estimation problem and rather large classes of interaction functions for which the above parametric rate holds.
The Knowledge Till rho CONGEST model is a variant of the classical CONGEST model of distributed computing in which each vertex v has initial knowledge of the radius-rho ball centered at v. The most commonly studied variants of the CONGEST model are KT0 CONGEST in which nodes initially know nothing about their neighbors and KT1 CONGEST in which nodes initially know the IDs of all their neighbors. It has been shown that having access to neighbors' IDs (as in the KT1 CONGEST model) can substantially reduce the message complexity of algorithms for fundamental problems such as BROADCAST and MST. For example, King, Kutten, and Thorup (PODC 2015) show how to construct an MST using just Otilde(n) messages in the KT1 CONGEST model, whereas there is an Omega(m) message lower bound for MST in the KT0 CONGEST model. Building on this result, Gmyr and Pandurangen (DISC 2018) present a family of distributed randomized algorithms for various global problems that exhibit a trade-off between message and round complexity. These algorithms are based on constructing a sparse, spanning subgraph called a danner. Specifically, given a graph G and any delta in [0,1], their algorithm constructs (with high probability) a danner that has diameter Otilde(D + n^{1-delta}) and Otilde(min{m,n^{1+delta}}) edges in Otilde(n^{1-delta}) rounds while using Otilde(min{m,n^{1+\delta}}) messages, where n, m, and D are the number of nodes, edges, and the diameter of G, respectively. In the main result of this paper, we show that if we assume the KT2 CONGEST model, it is possible to substantially improve the time-message trade-off in constructing a danner. Specifically, we show in the KT2 CONGEST model, how to construct a danner that has diameter Otilde(D + n^{1-2delta}) and Otilde(min{m,n^{1+delta}}) edges in Otilde(n^{1-2delta}) rounds while using Otilde(min{m,n^{1+\delta}}) messages for any delta in [0,1/2].
We introduce an algebraic concept of the frame for abstract conditional independence (CI) models, together with basic operations with respect to which such a frame should be closed: copying and marginalization. Three standard examples of such frames are (discrete) probabilistic CI structures, semi-graphoids and structural semi-graphoids. We concentrate on those frames which are closed under the operation of set-theoretical intersection because, for these, the respective families of CI models are lattices. This allows one to apply the results from lattice theory and formal concept analysis to describe such families in terms of implications among CI statements. The central concept of this paper is that of self-adhesivity defined in algebraic terms, which is a combinatorial reflection of the self-adhesivity concept studied earlier in context of polymatroids and information theory. The generalization also leads to a self-adhesivity operator defined on the hyper-level of CI frames. We answer some of the questions related to this approach and raise other open questions. The core of the paper is in computations. The combinatorial approach to computation might overcome some memory and space limitation of software packages based on polyhedral geometry, in particular, if SAT solvers are utilized. We characterize some basic CI families over 4 variables in terms of canonical implications among CI statements. We apply our method in information-theoretical context to the task of entropic region demarcation over 5 variables.
In the context of interactive theorem provers based on a dependent type theory, automation tactics (dedicated decision procedures, call of automated solvers, ...) are often limited to goals which are exactly in some expected logical fragment. This very often prevents users from applying these tactics in other contexts, even similar ones. This paper discusses the design and the implementation of pre-processing operations for automating formal proofs in the Coq proof assistant. It presents the implementation of a wide variety of predictible, atomic goal transformations, which can be composed in various ways to target different backends. A gallery of examples illustrates how it helps to expand significantly the power of automation engines.
By computing a feedback control via the linear quadratic regulator (LQR) approach and simulating a non-linear non-autonomous closed-loop system using this feedback, we combine two numerically challenging tasks. For the first task, the computation of the feedback control, we use the non-autonomous generalized differential Riccati equation (DRE), whose solution determines the time-varying feedback gain matrix. Regarding the second task, we want to be able to simulate non-linear closed-loop systems for which it is known that the regulator is only valid for sufficiently small perturbations. Thus, one easily runs into numerical issues in the integrators when the closed-loop control varies greatly. For these systems, e.g., the A-stable implicit Euler methods fails.\newline On the one hand, we implement non-autonomous versions of splitting schemes and BDF methods for the solution of our non-autonomous DREs. These are well-established DRE solvers in the autonomous case. On the other hand, to tackle the numerical issues in the simulation of the non-linear closed-loop system, we apply a fractional-step-theta scheme with time-adaptivity tuned specifically to this kind of challenge. That is, we additionally base the time-adaptivity on the activity of the control. We compare this approach to the more classical error-based time-adaptivity.\newline We describe techniques to make these two tasks computable in a reasonable amount of time and are able to simulate closed-loop systems with strongly varying controls, while avoiding numerical issues. Our time-adaptivity approach requires fewer time steps than the error-based alternative and is more reliable.
The scale function holds significant importance within the fluctuation theory of Levy processes, particularly in addressing exit problems. However, its definition is established through the Laplace transform, thereby lacking explicit representations in general. This paper introduces a novel series representation for this scale function, employing Laguerre polynomials to construct a uniformly convergent approximate sequence. Additionally, we derive statistical inference based on specific discrete observations, presenting estimators of scale functions that are asymptotically normal.
Accurate triangulation of the domain plays a pivotal role in computing the numerical approximation of the differential operators. A good triangulation is the one which aids in reducing discretization errors. In a standard collocation technique, the smooth curved domain is typically triangulated with a mesh by taking points on the boundary to approximate them by polygons. However, such an approach often leads to geometrical errors which directly affect the accuracy of the numerical approximation. To restrict such geometrical errors, \textit{isoparametric}, \textit{subparametric}, and \textit{iso-geometric} methods were introduced which allow the approximation of the curved surfaces (or curved line segments). In this paper, we present an efficient finite element method to approximate the solution to the elliptic boundary value problem (BVP), which governs the response of an elastic solid containing a v-notch and inclusions. The algebraically nonlinear constitutive equation along with the balance of linear momentum reduces to second-order quasi-linear elliptic partial differential equation. Our approach allows us to represent the complex curved boundaries by smooth \textit{one-of-its-kind} point transformation. The main idea is to obtain higher-order shape functions which enable us to accurately compute the entries in the finite element matrices and vectors. A Picard-type linearization is utilized to handle the nonlinearities in the governing differential equation. The numerical results for the test cases show considerable improvement in the accuracy.
The ability to extract material parameters of perovskite from quantitative experimental analysis is essential for rational design of photovoltaic and optoelectronic applications. However, the difficulty of this analysis increases significantly with the complexity of the theoretical model and the number of material parameters for perovskite. Here we use Bayesian optimization to develop an analysis platform that can extract up to 8 fundamental material parameters of an organometallic perovskite semiconductor from a transient photoluminescence experiment, based on a complex full physics model that includes drift-diffusion of carriers and dynamic defect occupation. An example study of thermal degradation reveals that changes in doping concentration and carrier mobility dominate, while the defect energy level remains nearly unchanged. This platform can be conveniently applied to other experiments or to combinations of experiments, accelerating materials discovery and optimization of semiconductor materials for photovoltaics and other applications.
We solve fluid flow problems through a space-time finite element method. The weak form of the Navier-Stokes equations is stabilized using the variational multi-scale formulation. The finite element problem is posed on the "full" space-time domain, considering time as another dimension. We apply this method on two benchmark problems in computational fluid dynamics, namely, lid-driven cavity flow and flow past a circular cylinder. We validate the current method with existing results from literature and show that very large space-time blocks can be solved using our approach.